Rees Matthew G, Brenan Lisa, do Carmo Mariana, Duggan Patrick, Bajrami Besnik, Arciprete Michael, Boghossian Andrew, Vaimberg Emma, Ferrara Steven J, Lewis Timothy A, Rosenberg Danny, Sangpo Tenzin, Roth Jennifer A, Kaushik Virendar K, Piccioni Federica, Doench John G, Root David E, Johannessen Cory M
Broad Institute of MIT and Harvard, Cambridge, MA, USA.
Mayo Clinic Alix School of Medicine, Rochester, MN, USA.
Nat Chem Biol. 2022 Jun;18(6):615-624. doi: 10.1038/s41589-022-00996-7. Epub 2022 Mar 24.
The ability to understand and predict variable responses to therapeutic agents may improve outcomes in patients with cancer. We hypothesized that the basal gene-transcription state of cancer cell lines, coupled with cell viability profiles of small molecules, might be leveraged to nominate specific mechanisms of intrinsic resistance and to predict drug combinations that overcome resistance. We analyzed 564,424 sensitivity profiles to identify candidate gene-compound pairs, and validated nine such relationships. We determined the mechanism of a novel relationship, in which expression of the serine hydrolase enzymes monoacylglycerol lipase (MGLL) or carboxylesterase 1 (CES1) confers resistance to the histone lysine demethylase inhibitor GSK-J4 by direct enzymatic modification. Insensitive cell lines could be sensitized to GSK-J4 by inhibition or gene knockout. These analytical and mechanistic studies highlight the potential of integrating gene-expression features with small-molecule response to identify patient populations that are likely to benefit from treatment, to nominate rational candidates for combinations and to provide insights into mechanisms of action.
理解和预测对治疗药物的可变反应的能力可能会改善癌症患者的治疗结果。我们假设癌细胞系的基础基因转录状态,结合小分子的细胞活力概况,可用于确定内在抗性的特定机制,并预测克服抗性的药物组合。我们分析了564,424个敏感性概况以识别候选基因-化合物对,并验证了九种此类关系。我们确定了一种新关系的机制,其中丝氨酸水解酶单酰甘油脂肪酶(MGLL)或羧酸酯酶1(CES1)的表达通过直接酶修饰赋予对组蛋白赖氨酸去甲基化酶抑制剂GSK-J4的抗性。不敏感的细胞系可通过抑制或基因敲除对GSK-J4敏感。这些分析和机制研究突出了整合基因表达特征与小分子反应以识别可能从治疗中受益的患者群体、提名合理的联合用药候选药物以及深入了解作用机制的潜力。