Suppr超能文献

评价一种在超声辅助乳腺肿瘤漫射光学层析成像中的模拟、重建和分类的流水线。

Evaluation of a pipeline for simulation, reconstruction, and classification in ultrasound-aided diffuse optical tomography of breast tumors.

机构信息

University College London, Department of Computer Science, London, United Kingdom.

Politecnico di Milano, Dipartimento di Fisica, Milano, Italy.

出版信息

J Biomed Opt. 2022 Mar;27(3). doi: 10.1117/1.JBO.27.3.036003.

Abstract

SIGNIFICANCE

Diffuse optical tomography is an ill-posed problem. Combination with ultrasound can improve the results of diffuse optical tomography applied to the diagnosis of breast cancer and allow for classification of lesions.

AIM

To provide a simulation pipeline for the assessment of reconstruction and classification methods for diffuse optical tomography with concurrent ultrasound information.

APPROACH

A set of breast digital phantoms with benign and malignant lesions was simulated building on the software VICTRE. Acoustic and optical properties were assigned to the phantoms for the generation of B-mode images and optical data. A reconstruction algorithm based on a two-region nonlinear fitting and incorporating the ultrasound information was tested. Machine learning classification methods were applied to the reconstructed values to discriminate lesions into benign and malignant after reconstruction.

RESULTS

The approach allowed us to generate realistic US and optical data and to test a two-region reconstruction method for a large number of realistic simulations. When information is extracted from ultrasound images, at least 75% of lesions are correctly classified. With ideal two-region separation, the accuracy is higher than 80%.

CONCLUSIONS

A pipeline for the generation of realistic ultrasound and diffuse optics data was implemented. Machine learning methods applied to a optical reconstruction with a nonlinear optical model and morphological information permit to discriminate malignant lesions from benign ones.

摘要

意义

漫射光学层析成像属于不适定问题。与超声结合可以改善应用于乳腺癌诊断的漫射光学层析成像的结果,并允许对病变进行分类。

目的

提供一个模拟管道,用于评估具有并发超声信息的漫射光学层析成像的重建和分类方法。

方法

基于软件 VICTRE 对具有良性和恶性病变的一组乳房数字体模进行模拟。为了生成 B 模式图像和光学数据,为体模分配了声和光特性。测试了一种基于两区域非线性拟合并结合超声信息的重建算法。在重建后,应用机器学习分类方法将重建值区分成良性和恶性病变。

结果

该方法允许我们生成逼真的 US 和光学数据,并对大量真实模拟进行了两区域重建方法的测试。当从超声图像中提取信息时,至少有 75%的病变被正确分类。当进行理想的两区域分离时,准确率高于 80%。

结论

实现了用于生成逼真超声和漫射光学数据的管道。将具有非线性光学模型和形态学信息的光学重建应用于机器学习方法,可以区分恶性病变和良性病变。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7552/8943242/1522efd0e390/JBO-027-036003-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验