Suppr超能文献

新型磷霉素耐药基因 fosY 存在于 CC1 型耐甲氧西林金黄色葡萄球菌的基因组岛上。

The novel fosfomycin resistance gene fosY is present on a genomic island in CC1 methicillin-resistant .

机构信息

Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.

Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou, People's Republic of China.

出版信息

Emerg Microbes Infect. 2022 Dec;11(1):1166-1173. doi: 10.1080/22221751.2022.2058421.

Abstract

Fosfomycin has gained attention as a combination therapy for methicillin-resistant infections. Hence, the detection of novel fosfomycin-resistance mechanisms in is important. Here, the minimal inhibitory concentrations (MICs) of fosfomycin in CC1 methicillin-resistant were determined. The pangenome analysis and comparative genomics were used to analyse CC1 MRSA. The gene function was confirmed by cloning the gene into pTXΔ. A phylogenetic tree was constructed to determine the clustering of the CC1 strains of We identified a novel gene, designated , that confers fosfomycin resistance in . The FosY protein is a putative bacillithiol transferase enzyme sharing 65.9-77.5% amino acid identity with FosB and FosD, respectively. The function of in decreasing fosfomycin susceptibility was confirmed by cloning it into pTXΔ. The pTX- transformant exhibited a 16-fold increase in fosfomycin MIC. The bioinformatic analysis showed that is in a novel genomic island designated RI (for "resistance island carrying ") that originated from other species. The global phylogenetic tree of ST1 MRSA displayed this -positive ST1 clone, originating from different regions, in the same clade. The novel resistance gene in the fos family, , and a genomic island, RI, can promote cross-species gene transfer and confer resistance to CC1 MRSA causing the failure of clinical treatment. This emphasises the importance of genetic surveillance of resistance genes among MRSA isolates.

摘要

磷霉素作为治疗耐甲氧西林金黄色葡萄球菌感染的联合治疗方法引起了关注。因此,检测新型磷霉素耐药机制在 中非常重要。本研究测定了 CC1 耐甲氧西林金黄色葡萄球菌中的磷霉素最小抑菌浓度(MIC)。通过泛基因组分析和比较基因组学分析 CC1 耐甲氧西林金黄色葡萄球菌。通过将基因克隆到 pTXΔ中,验证基因的功能。构建系统发育树以确定 中 CC1 菌株的聚类。我们在 中发现了一个新型基因,命名为 ,它赋予磷霉素耐药性。FosY 蛋白是一种假定的芽孢杆菌硫醇转移酶,与 FosB 和 FosD 分别具有 65.9-77.5%的氨基酸同一性。通过将其克隆到 pTXΔ中,证实了 在降低磷霉素敏感性方面的作用。pTX-转化子的磷霉素 MIC 增加了 16 倍。生物信息学分析表明, 位于一个新的基因岛 RI(代表“携带耐药基因的基因岛”)中,该基因岛来源于其他物种。ST1 耐甲氧西林金黄色葡萄球菌的全球系统发育树显示,起源于不同地区的 阳性 ST1 克隆位于同一分支中。新型磷霉素家族耐药基因 和基因岛 RI 可促进种间基因转移,并赋予 CC1 耐甲氧西林金黄色葡萄球菌耐药性,导致临床治疗失败。这强调了对耐甲氧西林金黄色葡萄球菌分离株中耐药基因进行遗传监测的重要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a7a6/9037201/d53b6caf1e65/TEMI_A_2058421_F0001_OC.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验