Suppr超能文献

高效载镍-锰双金属活性炭催化剂用于 5-羟甲基糠醛选择加氢脱氧制备 2,5-二甲基呋喃。

Highly Effective Activated Carbon-Supported Ni-Mn Bifunctional Catalyst for Selective Hydrodeoxygenation of 5-Hydroxymethylfurfural to 2,5-Dimethylfuran.

机构信息

College of Pharmaceutical Science, Zhejiang University of Technology, 310014, Hangzhou, P. R. China.

Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027, Hangzhou, P. R. China.

出版信息

ChemSusChem. 2022 Jul 7;15(13):e202200193. doi: 10.1002/cssc.202200193. Epub 2022 May 6.

Abstract

Designing highly efficient and low-cost catalysts for conversion of renewable biomass into high value-added chemicals and biofuels is important and challenging. Herein, a non-noble Ni-Mn bifunctional catalyst supported on activated carbon (Ni-Mn/AC) was developed by an incipient wetness impregnation method. The catalyst was found to be economic and efficient for the selective hydrodeoxygenation of biomass-derived 5-hydroxymethylfurfural (5-HMF) to 2,5-dimethylfuran (2,5-DMF). The optimal Ni-Mn/AC (Ni/Mn=3) catalyst achieved 98.5 % 2,5-DMF yield with 100 % conversion of 5-HMF under mild reaction conditions of 180 °C, 2.0 MPa H for 4 h. Furthermore, the catalyst exhibited outstanding reusability and could be recycled eight times without loss of activity. The addition of Mn not only enhanced the reactivity of 5-HMF but also resulted in the dominant reaction pathway shift from the hydrogenation of the C=O bond to the hydrogenolysis of C-OH bond, which was attributed to the synergy of highly dispersed Ni metallic nanoparticles and moderate Lewis acid sites from MnO as revealed by detailed characterizations.

摘要

设计高效、低成本的催化剂将可再生生物质转化为高附加值化学品和生物燃料是一项重要且具有挑战性的任务。在此,我们通过等体积浸渍法制备了一种负载在活性炭上的非贵金属 Ni-Mn 双功能催化剂(Ni-Mn/AC)。该催化剂在生物质基 5-羟甲基糠醛(5-HMF)选择性加氢脱氧制备 2,5-二甲基呋喃(2,5-DMF)反应中表现出良好的经济性和高效性。在温和的反应条件下(180°C、2.0 MPa H2、4 h),最优的 Ni-Mn/AC(Ni/Mn=3)催化剂可以实现 98.5%的 2,5-DMF 收率和 100%的 5-HMF 转化率。此外,该催化剂表现出出色的可重复使用性,经过 8 次循环回收后仍保持活性。Mn 的添加不仅提高了 5-HMF 的反应活性,还导致反应途径从 C=O 键的加氢反应为主转变为 C-OH 键的氢解反应为主,这归因于高分散的 Ni 金属纳米粒子与 MnO 中适度的路易斯酸位之间的协同作用,这一点可以通过详细的表征得到证实。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验