Buča Berislav
Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom.
Phys Rev Lett. 2022 Mar 11;128(10):100601. doi: 10.1103/PhysRevLett.128.100601.
Is a spontaneous perpetual reversal of the arrow of time possible? The out-of-time-ordered correlator (OTOC) is a standard measure of irreversibility, quantum scrambling, and the arrow of time. The question may be thus formulated more precisely and conveniently: can spatially ordered perpetual OTOC oscillations exist in many-body systems? Here we give a rigorous lower bound on the amplitude of OTOC oscillations in terms of a strictly local dynamical algebra allowing for identification of systems that are out-of-time-ordered (OTO) crystals. While OTOC oscillations are possible for few-body systems, due to the spatial order requirement OTO crystals cannot be achieved by effective single or few body dynamics, e.g., a pendulum or a condensate. Rather they signal perpetual motion of quantum scrambling. It is likewise shown that if a Hamiltonian satisfies this novel algebra, it has an exponentially large number of local invariant subspaces, i.e., Hilbert space fragmentation. Crucially, the algebra, and hence the OTO crystal, are stable to local unitary and dissipative perturbations. A Creutz ladder is shown to be an OTO crystal, which thus perpetually reverses its arrow of time.
时间箭头是否可能自发地持续反转?非时序关联器(OTOC)是不可逆性、量子混沌和时间箭头的一种标准度量。因此,这个问题可以更精确且方便地表述为:在多体系统中是否能存在空间有序的持续OTOC振荡?在这里,我们根据严格的局部动力学代数给出了OTOC振荡幅度的一个严格下限,这有助于识别出非时序(OTO)晶体的系统。虽然对于少体系统,OTOC振荡是可能的,但由于空间序的要求,OTO晶体无法通过有效的单粒子或少体动力学实现,例如摆或凝聚态。相反,它们标志着量子混沌的持续运动。同样表明,如果一个哈密顿量满足这种新的代数,它就有指数级数量的局部不变子空间,即希尔伯特空间碎片化。至关重要的是,这种代数以及OTO晶体对局部酉变换和耗散微扰是稳定的。一个克鲁茨梯被证明是一种OTO晶体,因此它能持续反转其时间箭头。