Suppr超能文献

利用分层无监督学习整合和减少与腰痛相关的多层次和多脊柱旁肌肉 MRI 数据。

Using hierarchical unsupervised learning to integrate and reduce multi-level and multi-paraspinal muscle MRI data in relation to low back pain.

机构信息

Department of Neurological Surgery, Brain and Spinal Injury Center (BASIC), Weill Institute for Neuroscience, UC San Francisco, 1001 Potrero Ave, San Francisco, CA, 94110, USA.

Department of Orthopaedic Surgery, UC San Francisco, 95 Kirkham St, San Francisco, CA, 94122, USA.

出版信息

Eur Spine J. 2022 Aug;31(8):2046-2056. doi: 10.1007/s00586-022-07169-z. Epub 2022 Mar 25.

Abstract

PURPOSE

The paraspinal muscles (PSM) are a key feature potentially related to low back pain (LBP), and their structure and composition can be quantified using MRI. Most commonly, quantifying PSM measures across individual muscles and individual spinal levels renders numerous separate metrics that are analyzed in isolation. However, comprehensive multivariate approaches would be more appropriate for analyzing the PSM within an individual. To establish and test these methods, we hypothesized that multivariate summaries of PSM MRI measures would associate with the presence of LBP symptoms (i.e., pain intensity).

METHODS

We applied hierarchical multiple factor analysis (hMFA), an unsupervised integrative method, to clinical PSM MRI data from unique cohort datasets including a longitudinal cohort of astronauts with pre- and post-spaceflight data and a cohort of chronic LBP subjects and asymptomatic controls. Three specific use cases were investigated: (1) predicting longitudinal changes in pain using combinations of baseline PSM measures; (2) integrating baseline and post-spaceflight MRI to assess longitudinal change in PSM and how it relates to pain; and (3) integrating PSM quality and adjacent spinal pathology between LBP patients and controls.

RESULTS

Overall, we found distinct complex relationships with pain intensity between particular muscles and spinal levels. Subjects with high asymmetry between left and right lean muscle composition and differences between spinal segments PSM quality and structure are more likely to increase in pain reported outcome after prolonged time in microgravity. Moreover, changes in PSM quality and structure between pre and post-spaceflight relate to increase in pain after prolonged microgravity. Finally, we show how unsupervised hMFA recapitulates previous research on the association of CEP damage and LBP diagnostic.

CONCLUSION

Our analysis considers the spine as a multi-segmental unit as opposed to a series of discrete and isolated spine segments. Integrative and multivariate approaches can be used to distill large and complex imaging datasets thereby improving the clinical utility of MRI-based biomarkers, and providing metrics for further analytical goals, including phenotyping.

摘要

目的

竖脊肌(PSM)是与下腰痛(LBP)相关的一个关键特征,其结构和组成可以通过 MRI 进行量化。最常见的是,对个体肌肉和个体脊柱水平的 PSM 测量进行量化,会产生许多单独的指标,这些指标都是单独进行分析的。然而,综合多元方法更适合分析个体的 PSM。为了建立和检验这些方法,我们假设 PSM MRI 测量的多元汇总与 LBP 症状(即疼痛强度)的存在相关。

方法

我们应用层次多因素分析(hMFA),一种无监督的综合方法,对来自独特队列数据集的临床 PSM MRI 数据进行分析,这些数据集包括一个有预先和飞行后数据的宇航员纵向队列,以及一个慢性 LBP 患者和无症状对照者队列。研究了三个具体用例:(1)使用基线 PSM 测量的组合预测疼痛的纵向变化;(2)整合基线和飞行后的 MRI 以评估 PSM 的纵向变化及其与疼痛的关系;(3)整合 LBP 患者和对照组之间的 PSM 质量和相邻脊柱病理。

结果

总体而言,我们发现了特定肌肉和脊柱水平之间与疼痛强度之间存在明显的复杂关系。在长时间处于微重力状态下,左右瘦肌肉组成之间的不对称性较高,脊柱节段 PSM 质量和结构之间的差异较大的受试者,其报告的疼痛结果更有可能增加。此外,飞行前后 PSM 质量和结构的变化与长时间微重力后疼痛的增加有关。最后,我们展示了无监督 hMFA 如何再现以前关于 CEP 损伤与 LBP 诊断关联的研究。

结论

我们的分析将脊柱视为一个多节段的单元,而不是一系列离散和孤立的脊柱节段。综合和多元方法可用于简化大型和复杂的成像数据集,从而提高基于 MRI 的生物标志物的临床实用性,并提供用于进一步分析目标的指标,包括表型分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8d5/9338899/0c86d5ff6ca6/586_2022_7169_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验