ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain.
Universitat Pompeu Fabra (UPF), Barcelona, Spain.
Int J Methods Psychiatr Res. 2018 Sep;27(3):e1738. doi: 10.1002/mpr.1738. Epub 2018 Aug 14.
We proposed the application of a multivariate cross-sectional framework based on a combination of a variable selection method and a multiple factor analysis (MFA) in order to identify complex meaningful biological signals related to attention-deficit/hyperactivity disorder (ADHD) symptoms and hyperactivity/inattention domains.
The study included 135 children from the general population with genomic and neuroimaging data. ADHD symptoms were assessed using a questionnaire based on ADHD-DSM-IV criteria. In all analyses, the raw sum scores of the hyperactivity and inattention domains and total ADHD were used. The analytical framework comprised two steps. First, zero-inflated negative binomial linear model via penalized maximum likelihood (LASSO-ZINB) was performed. Second, the most predictive features obtained with LASSO-ZINB were used as input for the MFA.
We observed significant relationships between ADHD symptoms and hyperactivity and inattention domains with white matter, gray matter regions, and cerebellum, as well as with loci within chromosome 1.
Multivariate methods can be used to advance the neurobiological characterization of complex diseases, improving the statistical power with respect to univariate methods, allowing the identification of meaningful biological signals in Imaging Genetic studies.
我们提出了一种基于变量选择方法和多元因子分析(MFA)相结合的多变量横断面框架的应用,以识别与注意力缺陷/多动障碍(ADHD)症状和多动/注意力领域相关的复杂有意义的生物学信号。
本研究纳入了来自普通人群的 135 名儿童,他们具有基因组和神经影像学数据。使用基于 ADHD-DSM-IV 标准的问卷评估 ADHD 症状。在所有分析中,均使用多动和注意力不集中领域的原始总和分数和总 ADHD。分析框架包括两个步骤。首先,通过惩罚最大似然(LASSO-ZINB)进行零膨胀负二项式线性模型。其次,将 LASSO-ZINB 获得的最具预测性特征用作 MFA 的输入。
我们观察到 ADHD 症状与多动和注意力不集中领域与白质、灰质区域和小脑以及 1 号染色体内的基因座之间存在显著关系。
多元方法可用于推进复杂疾病的神经生物学特征描述,相对于单变量方法提高统计能力,允许在影像学遗传学研究中识别有意义的生物学信号。