Suppr超能文献

自动化肺血管分割揭示病毒性肺炎中的血管容积再分布。

Automated lung vessel segmentation reveals blood vessel volume redistribution in viral pneumonia.

机构信息

Department of Radiology, University Hospital Basel, University of Basel, Petersgraben 4, 4031 Basel, Switzerland.

Department of Research and Analysis, University Hospital Basel, University of Basel, Petersgraben 4, 4031 Basel, Switzerland.

出版信息

Eur J Radiol. 2022 May;150:110259. doi: 10.1016/j.ejrad.2022.110259. Epub 2022 Mar 17.

Abstract

PURPOSE

It is known from histology studies that lung vessels are affected in viral pneumonia. However, their diagnostic potential as a chest CT imaging parameter has only rarely been exploited. The purpose of this study is to develop a robust method for automated lung vessel segmentation and morphology analysis and apply it to a large chest CT dataset.

METHODS

In total, 509 non-enhanced chest CTs (NECTs) and 563 CT pulmonary angiograms (CTPAs) were included. Sub-groups were patients with healthy lungs (group_NORM, n = 634) and those RT-PCR-positive for Influenza A/B (group_INF, n = 159) and SARS-CoV-2 (group_COV, n = 279). A lung vessel segmentation algorithm (LVSA) based on traditional image processing was developed, validated with a point-of-interest approach, and applied to a large clinical dataset. Total blood vessel volume in lung (TBV) and the blood vessel volume percentage (BV%) of three blood vessel size types were calculated and compared between groups: small (BV5%, cross-sectional area < 5 mm), medium (BV5-10%, 5-10 mm) and large (BV10%, >10 mm).

RESULTS

Sensitivity of the LVSA was 84.6% (95 %CI: 73.9-95.3) for NECTs and 92.8% (95 %CI: 90.8-94.7) for CTPAs. In viral pneumonia, besides an increased TBV, the main finding was a significantly decreased BV5% in group_COV (n = 14%) and group_INF (n = 15%) compared to group_NORM (n = 18%) [p < 0.001]. At the same time, BV10% was increased (group_COV n = 15% and group_INF n = 14% vs. group_NORM n = 11%; p < 0.001).

CONCLUSION

In COVID-19 and Influenza, the blood vessel volume is redistributed from small to large vessels in the lung. Automated LSVA allows researchers and clinicians to derive imaging parameters for large amounts of CTs. This can enhance the understanding of vascular changes, particularly in infectious lung diseases.

摘要

目的

组织学研究表明,肺部血管在病毒性肺炎中受到影响。然而,作为胸部 CT 成像参数的诊断潜力很少被利用。本研究的目的是开发一种稳健的方法,用于自动肺血管分割和形态分析,并将其应用于大型胸部 CT 数据集。

方法

共纳入 509 例非增强胸部 CT(NECT)和 563 例 CT 肺动脉造影(CTPA)。亚组为肺部健康患者(组 NORM,n=634)和 RT-PCR 检测为流感 A/B(组 INF,n=159)和 SARS-CoV-2(组 COV,n=279)阳性的患者。开发了一种基于传统图像处理的肺血管分割算法(LVSA),并通过兴趣点方法进行验证,然后将其应用于大型临床数据集。计算并比较各组之间三种血管大小类型的总血管体积(TBV)和血管体积百分比(BV%):小血管(BV5%,截面积<5mm)、中血管(BV5-10%,5-10mm)和大血管(BV10%,>10mm)。

结果

LVSA 对 NECT 的敏感度为 84.6%(95%CI:73.9-95.3),对 CTPA 的敏感度为 92.8%(95%CI:90.8-94.7)。在病毒性肺炎中,除 TBV 增加外,主要发现是 COV 组(n=14%)和 INF 组(n=15%)的 BV5%明显低于 NORM 组(n=18%)[p<0.001]。同时,BV10%增加(COV 组 n=15%和 INF 组 n=14%与 NORM 组 n=11%;p<0.001)。

结论

在 COVID-19 和流感中,肺部的血管体积从小血管重新分布到大血管。自动 LSVA 允许研究人员和临床医生从大量 CT 中获得成像参数。这可以增强对血管变化的理解,特别是在感染性肺部疾病中。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验