Bartololo Michelle A, Taylor-LaPole Alyssa M, Gandhi Darsh, Johnson Alexandria, Li Yaqi, Slack Emma, Stevens Isaiah, Turner Zachary, Weigand Justin D, Puelz Charles, Husmeier Dirk, Olufsen Mette S
Department of Mathematics, North Carolina State University, Raleigh, North Carolina, USA.
Department of Mathematics, University of Texas at Arlington, Arlington, TX, USA.
ArXiv. 2024 May 9:arXiv:2309.08779v3.
One-dimensional (1D) cardiovascular models offer a non-invasive method to answer medical questions, including predictions of wave-reflection, shear stress, functional flow reserve, vascular resistance, and compliance. This model type can predict patient-specific outcomes by solving 1D fluid dynamics equations in geometric networks extracted from medical images. However, the inherent uncertainty in in-vivo imaging introduces variability in network size and vessel dimensions, affecting hemodynamic predictions. Understanding the influence of variation in image-derived properties is essential to assess the fidelity of model predictions. Numerous programs exist to render three-dimensional surfaces and construct vessel centerlines. Still, there is no exact way to generate vascular trees from the centerlines while accounting for uncertainty in data. This study introduces an innovative framework employing statistical change point analysis to generate labeled trees that encode vessel dimensions and their associated uncertainty from medical images. To test this framework, we explore the impact of uncertainty in 1D hemodynamic predictions in a systemic and pulmonary arterial network. Simulations explore hemodynamic variations resulting from changes in vessel dimensions and segmentation; the latter is achieved by analyzing multiple segmentations of the same images. Results demonstrate the importance of accurately defining vessel radii and lengths when generating high-fidelity patient-specific hemodynamics models.
一维(1D)心血管模型提供了一种非侵入性方法来回答医学问题,包括对波反射、剪切应力、功能血流储备、血管阻力和顺应性的预测。这种模型类型可以通过求解从医学图像中提取的几何网络中的一维流体动力学方程来预测患者特定的结果。然而,体内成像中固有的不确定性会导致网络大小和血管尺寸的变化,从而影响血流动力学预测。了解图像衍生属性变化的影响对于评估模型预测的保真度至关重要。有许多程序可用于渲染三维表面和构建血管中心线。然而,在考虑数据不确定性的情况下,仍然没有从中心线生成血管树的精确方法。本研究引入了一个创新框架,采用统计变化点分析来生成标记树,该树编码来自医学图像的血管尺寸及其相关不确定性。为了测试这个框架,我们探讨了全身和肺动脉网络中一维血流动力学预测中不确定性的影响。模拟研究了血管尺寸和分割变化导致的血流动力学变化;后者通过分析同一图像的多个分割来实现。结果表明,在生成高保真患者特定血流动力学模型时,准确定义血管半径和长度非常重要。