Shinde Rohini B, Padalkar Navnath S, Sadavar Shrikant V, Kale Shital B, Magdum Vikas V, Chitare Yogesh M, Kulkarni Shirin P, Patil Umakant M, Parale Vinayak G, Park Hyung-Ho, Gunjakar Jayavant L
Centre for Interdisciplinary Research, D. Y. Patil Education Society (Institution Deemed to be University), Kolhapur 416 006, Maharastra, India.
Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, South Korea.
J Hazard Mater. 2022 Jun 15;432:128734. doi: 10.1016/j.jhazmat.2022.128734. Epub 2022 Mar 17.
2D-2D lattice engineering route is used to synthesize intimately coupled nanohybrids of layered double hydroxide (LDH) and potassium hexaniobate. The 2D-2D lattice engineering route is based on the electrostatically derived self-assembly of delaminated zinc-chromium-layered double hydroxide (ZC-LDH) nanosheets and potassium hexaniobate (HNb) nanosheets (ZCNb nanohybrids). The 2D-2D lattice-engineered ZCNb nanohybrids display expanded surface area, mesoporous anchored nanosheets network morphology, and intimate coupling between nanosheets. The 2D-2D lattice engineered ZCNb nanohybrids are used for the low temperature operated gas sensor. The ZCNb nanohybrids display outstanding selectivity for the SO, with the high response of 61.5% compared to pristine ZC-LDH (28.08%) and potassium niobate (8%) at 150 °C. Moreover, ZCNb sensors demonstrate superior response and recovery periods of 6 and 167 s at 150 °C, respectively. This result underscores the exceptional functionality of the ZCNb nanohybrids as efficient SO sensors. Moreover, these findings vividly demonstrate that the 2D-2D lattice-engineered ZCNb nanohybrids are quite effective not only in improving the gas sensor activity but also in developing of new type of intimately coupled mesoporous LDH-metal-oxide based hybrid materials.
二维-二维晶格工程路线用于合成层状双氢氧化物(LDH)和六铌酸钾的紧密耦合纳米杂化物。二维-二维晶格工程路线基于分层的锌-铬层状双氢氧化物(ZC-LDH)纳米片和六铌酸钾(HNb)纳米片(ZCNb纳米杂化物)的静电驱动自组装。二维-二维晶格工程化的ZCNb纳米杂化物具有扩大的表面积、介孔锚定纳米片网络形态以及纳米片之间的紧密耦合。二维-二维晶格工程化的ZCNb纳米杂化物用于低温操作的气体传感器。ZCNb纳米杂化物对SO表现出出色的选择性,在150°C时的高响应率为61.5%,相比原始ZC-LDH(28.08%)和铌酸钾(8%)。此外,ZCNb传感器在150°C时分别表现出6秒和167秒的优异响应和恢复时间。这一结果强调了ZCNb纳米杂化物作为高效SO传感器的卓越功能。此外,这些发现生动地表明,二维-二维晶格工程化的ZCNb纳米杂化物不仅在提高气体传感器活性方面非常有效,而且在开发新型紧密耦合的介孔LDH-金属氧化物基混合材料方面也非常有效。