Suppr超能文献

利用安全传感器的设备到设备(D2D)多准则学习算法。

Device-to-Device (D2D) Multi-Criteria Learning Algorithm Using Secured Sensors.

机构信息

Department of Computer Science, Islamia College Peshawar, Peshawar 25000, Pakistan.

Artificial Intelligence and Data Analytics (AIDA) Lab, CCIS Prince Sultan University, Riyadh 11586, Saudi Arabia.

出版信息

Sensors (Basel). 2022 Mar 9;22(6):2115. doi: 10.3390/s22062115.

Abstract

Wireless networks and the Internet of things (IoT) have proven rapid growth in the development and management of smart environments. These technologies are applied in numerous research fields, such as security surveillance, Internet of vehicles, medical systems, etc. The sensor technologies and IoT devices are cooperative and allow the collection of unpredictable factors from the observing field. However, the constraint resources of distributed battery-powered sensors decrease the energy efficiency of the IoT network and increase the delay in receiving the network data on users' devices. It is observed that many solutions are proposed to overcome the energy deficiency in smart applications; though, due to the mobility of the nodes, lots of communication incurs frequent data discontinuity, compromising the data trust. Therefore, this work introduces a D2D multi-criteria learning algorithm for IoT networks using secured sensors, which aims to improve the data exchange without imposing additional costs and data diverting for mobile sensors. Moreover, it reduces the compromising threats in the presence of anonymous devices and increases the trustworthiness of the IoT-enabled communication system with the support of machine learning. The proposed work was tested and analyzed using broad simulation-based experiments and demonstrated the significantly improved performance of the packet delivery ratio by 17%, packet disturbances by 31%, data delay by 22%, energy consumption by 24%, and computational complexity by 37% for realistic network configurations.

摘要

无线网络和物联网(IoT)在智能环境的开发和管理方面已经证明了快速的增长。这些技术应用于许多研究领域,如安全监控、车联网、医疗系统等。传感器技术和物联网设备具有协作性,可以从观测领域收集不可预测的因素。然而,分布式电池供电传感器的约束资源降低了物联网网络的能源效率,并增加了用户设备接收网络数据的延迟。可以观察到,已经提出了许多解决方案来克服智能应用中的能源不足问题;尽管如此,由于节点的移动性,大量的通信会导致频繁的数据不连续,从而影响数据的可信度。因此,这项工作引入了一种使用安全传感器的物联网网络的 D2D 多标准学习算法,旨在在不增加移动传感器成本和数据转移的情况下改善数据交换。此外,它还减少了匿名设备存在时的妥协威胁,并通过机器学习支持提高了物联网通信系统的可信度。所提出的工作使用广泛的基于仿真的实验进行了测试和分析,并在现实网络配置下,将数据包交付率提高了 17%,数据包干扰降低了 31%,数据延迟降低了 22%,能耗降低了 24%,计算复杂度降低了 37%,显著提高了性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7f51/8954068/32f8b221251c/sensors-22-02115-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验