Suppr超能文献

基于物联网和传感器的智能环境监测系统的研究进展

Advances in Smart Environment Monitoring Systems Using IoT and Sensors.

机构信息

Engineering Department, Università degli Studi del Sannio, 82100 Benevento, Italy.

Myanmar Institute of Information Technology (MIIT), 05053 Mandalay, Myanmar.

出版信息

Sensors (Basel). 2020 May 31;20(11):3113. doi: 10.3390/s20113113.

Abstract

Air quality, water pollution, and radiation pollution are major factors that pose genuine challenges in the environment. Suitable monitoring is necessary so that the world can achieve sustainable growth, by maintaining a healthy society. In recent years, the environment monitoring has turned into a smart environment monitoring (SEM) system, with the advances in the internet of things (IoT) and the development of modern sensors. Under this scenario, the present manuscript aims to accomplish a critical review of noteworthy contributions and research studies on SEM, that involve monitoring of air quality, water quality, radiation pollution, and agriculture systems. The review is divided on the basis of the purposes where SEM methods are applied, and then each purpose is further analyzed in terms of the sensors used, machine learning techniques involved, and classification methods used. The detailed analysis follows the extensive review which has suggested major recommendations and impacts of SEM research on the basis of discussion results and research trends analyzed. The authors have critically studied how the advances in sensor technology, IoT and machine learning methods make environment monitoring a truly smart monitoring system. Finally, the framework of robust methods of machine learning; denoising methods and development of suitable standards for wireless sensor networks (WSNs), has been suggested.

摘要

空气质量、水污染和辐射污染是环境中面临的真正挑战的主要因素。需要进行适当的监测,以便世界能够通过维持健康的社会实现可持续增长。近年来,环境监测已经转变为智能环境监测(SEM)系统,物联网(IoT)的进步和现代传感器的发展。在这种情况下,本手稿旨在对涉及空气质量、水质、辐射污染和农业系统监测的 SEM 的重要贡献和研究进行批判性回顾。该评论是根据 SEM 方法应用的目的进行划分的,然后根据使用的传感器、涉及的机器学习技术和使用的分类方法,进一步分析每个目的。详细的分析遵循广泛的审查,根据讨论结果和分析的研究趋势,提出了 SEM 研究对环境监测的主要建议和影响。作者批判性地研究了传感器技术、物联网和机器学习方法的进步如何使环境监测成为真正的智能监测系统。最后,提出了稳健的机器学习方法框架、去噪方法和适合无线传感器网络(WSN)的标准的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7578/7309034/da26a24223e0/sensors-20-03113-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验