Suppr超能文献

FILM:边缘计算中用于恶意软件检测的过滤与机器学习

FILM: Filtering and Machine Learning for Malware Detection in Edge Computing.

作者信息

Kim Young Jae, Park Chan-Hyeok, Yoon MyungKeun

机构信息

Common Computer, 8, Maeheon-ro, Seocho-gu, Seoul 06797, Korea.

Department of Computer Science, Kookmin University, 77, Jeongneung-ro, Seongbuk-gu, Seoul 02707, Korea.

出版信息

Sensors (Basel). 2022 Mar 10;22(6):2150. doi: 10.3390/s22062150.

Abstract

Machine learning with static-analysis features extracted from malware files has been adopted to detect malware variants, which is desirable for resource-constrained edge computing and Internet-of-Things devices with sensors; however, this learned model suffers from a misclassification problem because some malicious files have almost the same static-analysis features as benign ones. In this paper, we present a new detection method for edge computing that can utilize existing machine learning models to classify a suspicious file into either benign, malicious, or unpredictable categories while existing models make only a binary decision of either benign or malicious. The new method can utilize any existing deep learning models developed for malware detection after appending a simple sigmoid function to the models. When interpreting the sigmoid value during the testing phase, the new method determines if the model is confident about its prediction; therefore, the new method can take only the prediction of high accuracy, which reduces incorrect predictions on ambiguous static-analysis features. Through experiments on real malware datasets, we confirm that the new scheme significantly enhances the accuracy, precision, and recall of existing deep learning models. For example, the accuracy is enhanced from 0.96 to 0.99, while some files are classified as unpredictable that can be entrusted to the cloud for further dynamic or human analysis.

摘要

利用从恶意软件文件中提取的静态分析特征进行机器学习已被用于检测恶意软件变体,这对于资源受限的边缘计算以及带有传感器的物联网设备来说是很有必要的;然而,这种学习模型存在误分类问题,因为一些恶意文件与良性文件具有几乎相同的静态分析特征。在本文中,我们提出了一种针对边缘计算的新检测方法,该方法可以利用现有的机器学习模型将可疑文件分类为良性、恶意或不可预测类别,而现有模型只能做出良性或恶意的二元决策。新方法在为恶意软件检测开发的任何现有深度学习模型上附加一个简单的 sigmoid 函数后即可使用。在测试阶段解释 sigmoid 值时,新方法会确定模型对其预测是否有信心;因此,新方法仅采用高精度的预测,这减少了对模糊静态分析特征的错误预测。通过在真实恶意软件数据集上进行实验,我们证实新方案显著提高了现有深度学习模型的准确率、精确率和召回率。例如,准确率从 0.96 提高到 0.99,同时一些文件被分类为不可预测,可以委托给云进行进一步的动态或人工分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f7d/8949034/9d0585902978/sensors-22-02150-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验