Suppr超能文献

深钩:一种基于深度学习的可信框架,用于在 Linux 云环境中检测和分类未知恶意软件。

Deep-Hook: A trusted deep learning-based framework for unknown malware detection and classification in Linux cloud environments.

机构信息

Malware Lab, Cyber Security Research Center, Ben-Gurion University of the Negev, Israel; Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, Israel.

Malware Lab, Cyber Security Research Center, Ben-Gurion University of the Negev, Israel; Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, Israel.

出版信息

Neural Netw. 2021 Dec;144:648-685. doi: 10.1016/j.neunet.2021.09.019. Epub 2021 Oct 2.

Abstract

Since the beginning of the 21st century, the use of cloud computing has increased rapidly, and it currently plays a significant role among most organizations' information technology (IT) infrastructure. Virtualization technologies, particularly virtual machines (VMs), are widely used and lie at the core of cloud computing. While different operating systems can run on top of VM instances, in public cloud environments the Linux operating system is used 90% of the time. Because of their prevalence, organizational Linux-based virtual servers have become an attractive target for cyber-attacks, mainly launched by sophisticated malware designed at causing harm, sabotaging operations, obtaining data, or gaining financial profit. This has resulted in the need for an advanced and reliable unknown malware detection mechanism for Linux cloud-based environments. Antivirus software and today's even more advanced malware detection solutions have limitations in detecting new, unseen, and evasive malware. Moreover, many existing solutions are considered untrusted, as they operate on the inspected machine and can be interfered with, and can even be detected by the malware itself, allowing malware to evade detection and cause damage. In this paper, we propose Deep-Hook, a trusted framework for unknown malware detection in Linux-based cloud environments. Deep-Hook hooks the VM's volatile memory in a trusted manner and acquires the memory dump to discover malware footprints while the VM operates. The memory dumps are transformed into visual images which are analyzed using a convolutional neural network (CNN) based classifier. The proposed framework has some key advantages, such as its agility, its ability to eliminate the need for features defined by a cyber domain expert, and most importantly, its ability to analyze the entire memory dump and thus to better utilize the existing indication it conceals, thus allowing the induction of a more accurate detection model. Deep-Hook was evaluated on widely used Linux virtual servers; four state-of-the-art CNN architectures; eight image resolutions; and a total of 22,400 volatile memory dumps representing the execution of a broad set of benign and malicious Linux applications. Our experimental evaluation results demonstrate Deep-Hook's ability to effectively, efficiently, and accurately detect and classify unknown malware (even evasive malware like rootkits), with an AUC and accuracy of up to 99.9%.

摘要

自 21 世纪初以来,云计算的使用迅速增加,目前在大多数组织的信息技术 (IT) 基础架构中扮演着重要角色。虚拟化技术,特别是虚拟机 (VM),被广泛使用,是云计算的核心。虽然不同的操作系统可以在 VM 实例上运行,但在公共云环境中,90%的时间使用的是 Linux 操作系统。由于它们的普遍性,基于 Linux 的组织虚拟服务器已成为网络攻击的一个有吸引力的目标,主要由旨在造成伤害、破坏操作、获取数据或获得经济利益的复杂恶意软件发起。这导致需要一种先进且可靠的针对基于 Linux 的云环境的未知恶意软件检测机制。防病毒软件和当今更先进的恶意软件检测解决方案在检测新的、未见过的和逃避检测的恶意软件方面存在局限性。此外,许多现有的解决方案被认为是不可信的,因为它们在受检查的机器上运行,并且可能会受到干扰,甚至可能被恶意软件本身检测到,从而使恶意软件能够逃避检测并造成损害。在本文中,我们提出了 Deep-Hook,这是一种针对基于 Linux 的云环境中的未知恶意软件检测的可信框架。Deep-Hook 以可信的方式挂钩 VM 的易失性内存,并在 VM 运行时获取内存转储以发现恶意软件痕迹。内存转储被转换为可视图像,然后使用基于卷积神经网络 (CNN) 的分类器对其进行分析。所提出的框架具有一些关键优势,例如其敏捷性、消除网络领域专家定义特征的需求的能力,以及最重要的是,它能够分析整个内存转储,从而更好地利用其隐藏的现有指示,从而可以引入更准确的检测模型。Deep-Hook 在广泛使用的 Linux 虚拟服务器上进行了评估;四个最先进的 CNN 架构;八个图像分辨率;以及总共 22400 个易失性内存转储,代表了广泛的良性和恶意 Linux 应用程序的执行。我们的实验评估结果表明,Deep-Hook 能够有效地、高效地、准确地检测和分类未知恶意软件(甚至是逃避检测的恶意软件,如 rootkit),AUC 和准确率高达 99.9%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验