Suppr超能文献

船舶光伏组件系统应用的预测性故障诊断

Predictive Fault Diagnosis for Ship Photovoltaic Modules Systems Applications.

作者信息

García Emilio, Quiles Eduardo, Zotovic-Stanisic Ranko, Gutiérrez Santiago C

机构信息

Instituto de Automática e Informática Industrial, Universitat Politècnica de València, Camino de Vera, s/n, 46022 Valencia, Spain.

Instituto de Diseño y Fabricación (IDF), Universitat Politècnica de València, Camino de Vera, s/n, 46022 Valencia, Spain.

出版信息

Sensors (Basel). 2022 Mar 10;22(6):2175. doi: 10.3390/s22062175.

Abstract

In this paper, an application for the management and supervision by predictive fault diagnosis (PFD) of solar power generation systems is developed through a National Marine Electronics Association (NMEA) 2000 smart sensor network. Here, the NMEA 2000 network sensor devices for measuring and supervising the parameters inherent to solar power generation and renewable energy supply are applied. The importance of renewable power generation systems in ships is discussed, as well as the causes of photovoltaic modules (PVMs) aging due to superimposed causes of degradation, which is a natural and inexorable phenomenon that affects photovoltaic installations in a special way. In ships, PVMs are doubly exposed to inclement weather (solar radiation, cold, rain, dust, humidity, snow, wind, electrical storms, etc.), pollution, and a particularly aggressive environment in terms of corrosion. PFD techniques for the real-world installation and safe navigation of PVMs are discussed. A specific method based on the online analysis of the time-series data of random and seasonal I-V parameters is proposed for the comparative trend analyses of solar power generation. The objective is to apply PFD using as predictor symptom parameter (PS) the generated power decrease in affected PVMs. This PFD method allows early fault detection and isolation, whose appearance precedes by an adequate margin of maneuver, from the point of view of maintenance tasks applications. This early detection can stop the cumulative degradation phenomenon that causes the development of the most frequent and dangerous failure modes of solar modules, such as hot-spots. It is concluded that these failure modes can be conveniently diagnosed by performing comparative trend analyses of the measured power parameters by NMEA sensors.

摘要

本文通过国家海洋电子协会(NMEA)2000智能传感器网络,开发了一种用于太阳能发电系统预测性故障诊断(PFD)管理与监督的应用程序。在此,应用了用于测量和监督太阳能发电及可再生能源供应固有参数的NMEA 2000网络传感器设备。讨论了可再生发电系统在船舶中的重要性,以及由于叠加的退化原因导致光伏模块(PVM)老化的原因,这是一种以特殊方式影响光伏装置的自然且不可避免的现象。在船舶中,PVM会双重暴露于恶劣天气(太阳辐射、寒冷、降雨、灰尘、湿度、雪、风、电风暴等)、污染以及在腐蚀方面特别恶劣的环境中。讨论了用于PVM实际安装和安全航行的PFD技术。提出了一种基于对随机和季节性I-V参数时间序列数据进行在线分析的特定方法,用于太阳能发电的比较趋势分析。目的是将受影响的PVM中发电量下降作为预测症状参数(PS)来应用PFD。从维护任务应用的角度来看,这种PFD方法允许早期故障检测和隔离,其出现之前有足够的操作余量。这种早期检测可以阻止导致太阳能模块最常见和危险故障模式(如热点)发展的累积退化现象。得出的结论是,通过对NMEA传感器测量的功率参数进行比较趋势分析,可以方便地诊断这些故障模式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3531/8948632/b46eb5655c0c/sensors-22-02175-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验