Suppr超能文献

用于探究光系统I中铁硫簇氧化还原电位的计算方法。

Computational Approach for Probing Redox Potential for Iron-Sulfur Clusters in Photosystem I.

作者信息

Ali Fedaa, Shafaa Medhat W, Amin Muhamed

机构信息

Medical Biophysics Division, Department of Physics, Faculty of Science, Helwan University, Cairo 11795, Egypt.

Genome Science and Technology, The University of Tennessee, Knoxville, TN 37996, USA.

出版信息

Biology (Basel). 2022 Feb 24;11(3):362. doi: 10.3390/biology11030362.

Abstract

Photosystem I is a light-driven electron transfer device. Available X-ray crystal structure from Thermosynechococcus elongatus showed that electron transfer pathways consist of two nearly symmetric branches of cofactors converging at the first iron-sulfur cluster F, which is followed by two terminal iron-sulfur clusters F and F. Experiments have shown that F has lower oxidation potential than F and F, which facilitates the electron transfer reaction. Here, we use density functional theory and Multi-Conformer Continuum Electrostatics to explain the differences in the midpoint Em potentials of the F, F and F clusters. Our calculations show that F has the lowest oxidation potential compared to F and F due to strong pairwise electrostatic interactions with surrounding residues. These interactions are shown to be dominated by the bridging sulfurs and cysteine ligands, which may be attributed to the shorter average bond distances between the oxidized Fe ion and ligating sulfurs for F compared to F and F. Moreover, the electrostatic repulsion between the 4Fe-4S clusters and the positive potential of the backbone atoms is lowest for F compared to both F and F These results agree with the experimental measurements from the redox titrations of low-temperature EPR signals and of room temperature recombination kinetics.

摘要

光系统I是一种光驱动的电子转移装置。来自嗜热栖热放线菌的现有X射线晶体结构表明,电子转移途径由两个几乎对称的辅因子分支组成,这两个分支在第一个铁硫簇F处汇聚,随后是两个末端铁硫簇F和F。实验表明,F的氧化电位低于F和F,这有利于电子转移反应。在此,我们使用密度泛函理论和多构象连续介质静电学来解释F、F和F簇中点Em电位的差异。我们的计算表明,与F和F相比,F由于与周围残基的强成对静电相互作用而具有最低的氧化电位。这些相互作用显示出以桥连硫和半胱氨酸配体为主,这可能归因于与F和F相比,F的氧化态铁离子与连接硫之间的平均键距更短。此外,与F和F相比,F的4Fe-4S簇与主链原子正电位之间的静电排斥最低。这些结果与低温EPR信号的氧化还原滴定和室温重组动力学的实验测量结果一致。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/473e/8945787/3db7104b19be/biology-11-00362-g001.jpg

相似文献

1
Computational Approach for Probing Redox Potential for Iron-Sulfur Clusters in Photosystem I.
Biology (Basel). 2022 Feb 24;11(3):362. doi: 10.3390/biology11030362.
6
Changes in the Electron Transfer Symmetry in the Photosystem I Reaction Centers upon Removal of Iron-Sulfur Clusters.
Biochemistry (Mosc). 2022 Oct;87(10):1109-1118. doi: 10.1134/S0006297922100042.

引用本文的文献

1
The Properties That Allow Tuning the Reduction Potentials over a Volt Range in Biological Iron/Sulfur Clusters.
J Phys Chem Lett. 2025 May 15;16(19):4602-4606. doi: 10.1021/acs.jpclett.5c00616. Epub 2025 May 1.
2
Predicting Iron-Sulfur Cluster Redox Potentials: A Simple Model Derived from Protein Structures.
ACS Omega. 2025 Apr 11;10(15):15790-15798. doi: 10.1021/acsomega.5c01976. eCollection 2025 Apr 22.
3
The oxidation of the [4Fe-4S] cluster of DNA primase alters the binding energies with DNA and RNA primers.
Biophys J. 2024 Jun 18;123(12):1648-1653. doi: 10.1016/j.bpj.2024.05.007. Epub 2024 May 9.
4
Redox Potentials of Iron-Sulfur Clusters in Type I Photosynthetic Reaction Centers.
J Phys Chem B. 2023 Jun 8;127(22):4998-5004. doi: 10.1021/acs.jpcb.3c01071. Epub 2023 May 24.
5
Mechanism of Mixed-Valence Fe···Fe Formation in FeS Clusters in the Ferredoxin Binding Motif.
J Phys Chem B. 2022 Apr 28;126(16):3059-3066. doi: 10.1021/acs.jpcb.2c01320. Epub 2022 Apr 18.

本文引用的文献

1
Combined QM/MM and Monte Carlo study for redox leveling in Mn and Fe superoxide dismutase.
J Biol Inorg Chem. 2018 Mar;23(2):285-293. doi: 10.1007/s00775-017-1530-8. Epub 2017 Dec 27.
2
Kinetic modeling of electron transfer reactions in photosystem I complexes of various structures with substituted quinone acceptors.
Photosynth Res. 2017 Sep;133(1-3):185-199. doi: 10.1007/s11120-017-0366-y. Epub 2017 Mar 28.
3
Structure and energy transfer in photosystems of oxygenic photosynthesis.
Annu Rev Biochem. 2015;84:659-83. doi: 10.1146/annurev-biochem-092914-041942. Epub 2015 Mar 5.
4
Electronic structure investigation and parametrization of biologically relevant iron-sulfur clusters.
J Chem Inf Model. 2014 Feb 24;54(2):613-20. doi: 10.1021/ci400718m. Epub 2014 Feb 6.
5
Light-harvesting in photosystem I.
Photosynth Res. 2013 Oct;116(2-3):153-66. doi: 10.1007/s11120-013-9838-x. Epub 2013 May 4.
7
OpenMM 4: A Reusable, Extensible, Hardware Independent Library for High Performance Molecular Simulation.
J Chem Theory Comput. 2013 Jan 8;9(1):461-469. doi: 10.1021/ct300857j. Epub 2012 Oct 18.
8
Force field development for cofactors in the photosystem II.
J Comput Chem. 2012 Sep 30;33(25):1969-80. doi: 10.1002/jcc.23016. Epub 2012 Jun 8.
10
Femtosecond primary charge separation in Synechocystis sp. PCC 6803 photosystem I.
Biochim Biophys Acta. 2010 Aug;1797(8):1410-20. doi: 10.1016/j.bbabio.2010.02.026. Epub 2010 Feb 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验