Suppr超能文献

环境对通风气流中活病毒传播和再悬浮的影响。

Environmental Effects on Viable Virus Transport and Resuspension in Ventilation Airflow.

作者信息

Baig Tatiana A, Zhang Meiyi, Smith Brooke L, King Maria D

机构信息

Aerosol Technology Laboratory, Biological & Agricultural Engineering Department, Texas A&M University, College Station, TX 77843, USA.

出版信息

Viruses. 2022 Mar 16;14(3):616. doi: 10.3390/v14030616.

Abstract

To understand how SARS-CoV-2 spreads indoors, in this study bovine coronavirus was aerosolized as simulant into a plexiglass chamber with coupons of metal, wood and plastic surfaces. After aerosolization, chamber and coupon surfaces were swiped to quantify the virus concentrations using quantitative polymerase chain reaction (qPCR). Bio-layer interferometry showed stronger virus association on plastic and metal surfaces, however, higher dissociation from wood in 80% relative humidity. Virus aerosols were collected with the 100 L/min wetted wall cyclone and the 50 L/min MD8 air sampler and quantitated by qPCR. To monitor the effect of the ventilation on the virus movement, PRD1 bacteriophages as virus simulants were disseminated in a ¾ scale air-conditioned hospital test room with twelve PM2.5 samplers at 15 L/min. Higher virus concentrations were detected above the patient's head and near the foot of the bed with the air inlet on the ceiling above, exhaust bottom left on the wall. Based on room layout, air measurements and bioaerosol collections computational flow models were created to visualize the movement of the virus in the room airflow. The addition of air curtain at the door minimized virus concentration while having the inlet and exhaust on the ceiling decreased overall aerosol concentration. Controlled laboratory experiments were conducted in a plexiglass chamber to gain more insight into the fundamental behavior of aerosolized SARS-CoV-2 and understand its fate and transport in the ambient environment of the hospital room.

摘要

为了解严重急性呼吸综合征冠状病毒2(SARS-CoV-2)如何在室内传播,在本研究中,牛冠状病毒作为模拟物被雾化到一个带有金属、木材和塑料表面试片的有机玻璃室内。雾化后,擦拭室内和试片表面,使用定量聚合酶链反应(qPCR)对病毒浓度进行定量。生物层干涉测量显示病毒在塑料和金属表面的结合更强,然而,在80%相对湿度下从木材表面的解离更高。使用100升/分钟的湿壁旋风分离器和50升/分钟的MD8空气采样器收集病毒气溶胶,并通过qPCR进行定量。为监测通风对病毒传播的影响,将PRD1噬菌体作为病毒模拟物散布在一个四分之三比例的有空调的医院测试房间内,房间内有12个以15升/分钟运行的PM2.5采样器。在天花板上方有进气口、墙壁左下角有排气口的情况下,在患者头部上方和床尾附近检测到较高的病毒浓度。基于房间布局、空气测量和生物气溶胶收集情况,创建了计算气流模型,以可视化病毒在室内气流中的传播。在门口增加气幕可使病毒浓度降至最低,而进气口和排气口都在天花板上则可降低总体气溶胶浓度。在有机玻璃室内进行了对照实验室实验,以更深入地了解雾化的SARS-CoV-2的基本行为,并了解其在医院病房环境中的归宿和传播情况。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/22b1/8950092/ea09079e1b88/viruses-14-00616-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验