Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China.
College of Chemical Biology and Biotechnology, Beijing University Shenzhen Graduate School, Shenzhen 518055, China.
Proc Natl Acad Sci U S A. 2020 Jun 23;117(25):13967-13974. doi: 10.1073/pnas.2008209117. Epub 2020 Jun 5.
Molecular dynamics and free energy simulations have been carried out to elucidate the structural origin of differential protein-protein interactions between the common receptor protein angiotensin converting enzyme 2 (ACE2) and the receptor binding domains of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) [A. E. Gorbalenya , 5, 536-544 (2020)] that causes coronavirus disease 2019 (COVID-19) [P. Zhou , 579, 270-273 (2020)] and the SARS coronavirus in the 2002-2003 (SARS-CoV) [T. Kuiken , Lancet 362, 263-270 (2003)] outbreak. Analysis of the dynamic trajectories reveals that the binding interface consists of a primarily hydrophobic region and a delicate hydrogen-bonding network in the 2019 novel coronavirus. A key mutation from a hydrophobic residue in the SARS-CoV sequence to Lys417 in SARS-CoV-2 creates a salt bridge across the central hydrophobic contact region, which along with polar residue mutations results in greater electrostatic complementarity than that of the SARS-CoV complex. Furthermore, both electrostatic effects and enhanced hydrophobic packing due to removal of four out of five proline residues in a short 12-residue loop lead to conformation shift toward a more tilted binding groove in the complex in comparison with the SARS-CoV complex. On the other hand, hydrophobic contacts in the complex of the SARS-CoV-neutralizing antibody 80R are disrupted in the SARS-CoV-2 homology complex model, which is attributed to failure of recognition of SARS-CoV-2 by 80R.
运用分子动力学和自由能模拟技术,阐明了导致 2019 年冠状病毒病(COVID-19)[P. Zhou, 579, 270-273 (2020)]的严重急性呼吸综合征冠状病毒 2(SARS-CoV-2)受体结合结构域与普遍存在的受体蛋白血管紧张素转化酶 2(ACE2)之间蛋白-蛋白相互作用存在差异的结构基础。该研究由 A. E. Gorbalenya 等人发表于[5, 536-544 (2020)]。同时,该研究还分析了 2002-2003 年(SARS-CoV)[T. Kuiken, Lancet 362, 263-270 (2003)]严重急性呼吸综合征冠状病毒和 2019 年新型冠状病毒中受体结合结构域的动态轨迹。分析结果表明,2019 年新型冠状病毒的结合界面主要由一个疏水区域和一个精细的氢键网络组成。SARS-CoV-2 序列中一个疏水残基突变为赖氨酸 417 取代 SARS-CoV 中的相应残基,形成了横跨中央疏水接触区域的盐桥,加上极性残基的突变,使得 SARS-CoV-2 与 ACE2 的结合比 SARS-CoV 更为匹配。此外,静电作用和由于在一个 12 个残基的短环中去除 5 个脯氨酸残基而导致的疏水性增强,使得与 SARS-CoV 复合物相比,复合物的构象向更倾斜的结合槽发生转变。另一方面,SARS-CoV 中和抗体 80R 与 SARS-CoV-2 同源复合物模型中的结合发生了疏水接触中断,这归因于 80R 对 SARS-CoV-2 的识别失败。