Suppr超能文献

开发和验证用于在 Medline 和 Embase 中识别关于药物减量文章的检索过滤器。

Development and validation of search filters to identify articles on deprescribing in Medline and Embase.

机构信息

Département de Médecine Générale, Faculté de Médecine, Nantes Université, Nantes, France.

Inserm-University of Tours-University of Nantes, UMR U1246 Sphere "Methods in Patient-Centered Outcomes and Health Research", 37000, Tours, France.

出版信息

BMC Med Res Methodol. 2022 Mar 25;22(1):79. doi: 10.1186/s12874-022-01515-x.

Abstract

BACKGROUND

Deprescribing literature has been increasing rapidly. Our aim was to develop and validate search filters to identify articles on deprescribing in Medline via PubMed and in Embase via Embase.com .

METHODS

Articles published from 2011 to 2020 in a core set of eight journals (covering fields of interest for deprescribing, such as geriatrics, pharmacology and primary care) formed a reference set. Each article was screened independently in duplicate and classified as relevant or non-relevant to deprescribing. Relevant terms were identified by term frequency analysis in a 70% subset of the reference set. Selected title and abstract terms, MeSH terms and Emtree terms were combined to develop two highly sensitive filters for Medline via Pubmed and Embase via Embase.com . The filters were validated against the remaining 30% of the reference set. Sensitivity, specificity and precision were calculated with their 95% confidence intervals (95% CI).

RESULTS

A total of 23,741 articles were aggregated in the reference set, and 224 were classified as relevant to deprescribing. A total of 34 terms and 4 MeSH terms were identified to develop the Medline search filter. A total of 27 terms and 6 Emtree terms were identified to develop the Embase search filter. The sensitivity was 92% (95% CI: 83-97%) in Medline via Pubmed and 91% (95% CI: 82-96%) in Embase via Embase.com .

CONCLUSIONS

These are the first deprescribing search filters that have been developed objectively and validated. These filters can be used in search strategies for future deprescribing reviews. Further prospective studies are needed to assess their effectiveness and efficiency when used in systematic reviews.

摘要

背景

有关减少用药的文献数量正在迅速增加。我们的目的是开发和验证搜索过滤器,以便通过 PubMed 在 Medline 中以及通过 Embase.com 在 Embase 中识别与减少用药相关的文章。

方法

从 2011 年至 2020 年,在一个核心期刊组(涵盖了减少用药相关的领域,如老年病学、药理学和初级保健)中发表的文章构成了参考集。每篇文章都由两名独立的评审员进行筛查,然后将其分为与减少用药相关或不相关的文章。在参考集的 70%子集中,通过术语频率分析确定相关术语。选择标题和摘要术语、MeSH 术语和 Emtree 术语,以开发针对 Medline 中的 PubMed 和针对 Embase 中的 Embase.com 的两个高度敏感的过滤器。使用参考集的其余 30%对过滤器进行验证。使用 95%置信区间(95%CI)计算灵敏度、特异性和精度。

结果

参考集中共汇总了 23741 篇文章,其中 224 篇被归类为与减少用药相关。共确定了 34 个术语和 4 个 MeSH 术语来开发 Medline 搜索过滤器。共确定了 27 个术语和 6 个 Emtree 术语来开发 Embase 搜索过滤器。在 Medline 中的 PubMed 中,灵敏度为 92%(95%CI:83-97%),在 Embase 中的 Embase.com 中,灵敏度为 91%(95%CI:82-96%)。

结论

这是首次开发并验证的专门用于减少用药的搜索过滤器。这些过滤器可用于未来减少用药综述的搜索策略。需要进一步的前瞻性研究来评估它们在系统综述中的有效性和效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/63f5/8953136/6bc28b46e46c/12874_2022_1515_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验