Suppr超能文献

周期性低氧条件下细胞周期进展的 DNA 结构数学模型。

A DNA-structured mathematical model of cell-cycle progression in cyclic hypoxia.

机构信息

Mathematical Institute, University of Oxford, Oxford, UK.

Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK.

出版信息

J Theor Biol. 2022 Jul 21;545:111104. doi: 10.1016/j.jtbi.2022.111104. Epub 2022 Mar 23.

Abstract

New experimental data have shown how the periodic exposure of cells to low oxygen levels (i.e., cyclic hypoxia) impacts their progress through the cell-cycle. Cyclic hypoxia has been detected in tumours and linked to poor prognosis and treatment failure. While fluctuating oxygen environments can be reproduced in vitro, the range of oxygen cycles that can be tested is limited. By contrast, mathematical models can be used to predict the response to a wide range of cyclic dynamics. Accordingly, in this paper we develop a mechanistic model of the cell-cycle that can be combined with in vitro experiments to better understand the link between cyclic hypoxia and cell-cycle dysregulation. A distinguishing feature of our model is the inclusion of impaired DNA synthesis and cell-cycle arrest due to periodic exposure to severely low oxygen levels. Our model decomposes the cell population into five compartments and a time-dependent delay accounts for the variability in the duration of the S phase which increases in severe hypoxia due to reduced rates of DNA synthesis. We calibrate our model against experimental data and show that it recapitulates the observed cell-cycle dynamics. We use the calibrated model to investigate the response of cells to oxygen cycles not yet tested experimentally. When the re-oxygenation phase is sufficiently long, our model predicts that cyclic hypoxia simply slows cell proliferation since cells spend more time in the S phase. On the contrary, cycles with short periods of re-oxygenation are predicted to lead to inhibition of proliferation, with cells arresting from the cell-cycle in the G2 phase. While model predictions on short time scales (about a day) are fairly accurate (i.e, confidence intervals are small), the predictions become more uncertain over longer periods. Hence, we use our model to inform experimental design that can lead to improved model parameter estimates and validate model predictions.

摘要

新的实验数据表明,细胞周期性地暴露于低氧水平(即周期性缺氧)如何影响它们在细胞周期中的进展。周期性缺氧已在肿瘤中被检测到,并与不良预后和治疗失败有关。虽然可以在体外重现波动的氧气环境,但可以测试的氧气循环范围是有限的。相比之下,数学模型可以用于预测对广泛循环动力学的反应。因此,在本文中,我们开发了一种细胞周期的机制模型,该模型可以与体外实验相结合,以更好地理解周期性缺氧与细胞周期失调之间的联系。我们的模型的一个显著特点是包括由于周期性暴露于极低氧水平而导致的 DNA 合成受损和细胞周期停滞。我们的模型将细胞群体分解为五个隔室,并且与 S 期持续时间的可变性相关的时变延迟考虑到了由于 DNA 合成速率降低而导致的 S 期持续时间增加的严重缺氧。我们根据实验数据对模型进行了校准,并表明它再现了观察到的细胞周期动力学。我们使用校准后的模型来研究细胞对尚未通过实验测试的氧气循环的反应。当再氧合阶段足够长时,我们的模型预测周期性缺氧只会减缓细胞增殖,因为细胞在 S 期花费更多时间。相反,预测具有短再氧合期的周期会导致增殖抑制,细胞在 G2 期从细胞周期中停滞。虽然短时间尺度(约一天)的模型预测相当准确(即置信区间较小),但随着时间的延长,预测变得更加不确定。因此,我们使用我们的模型为实验设计提供信息,这可以导致改进的模型参数估计并验证模型预测。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验