Energy School, Xi'an University of Science and Technology, Xi'an 710054, China; Research Center for Functional Backfill Technology in Mine, Xi'an 710054, China.
Energy School, Xi'an University of Science and Technology, Xi'an 710054, China; Key Laboratory of Western Mines and Hazards Prevention, Ministry of Education of China, Xi'an 710054, China; Research Center for Functional Backfill Technology in Mine, Xi'an 710054, China.
Sci Total Environ. 2022 Jul 15;830:154766. doi: 10.1016/j.scitotenv.2022.154766. Epub 2022 Mar 23.
To realize low-cost green backfill mining, this paper proposes a novel model of aeolian sand-cement-modified gasification slag-paste backfill (ACGPB). This model realizes the safe disposal and resource utilization of hazardous solid wastes. A comprehensive experiment (including slump test, uniaxial compressive strength tests, microscopic test, and leaching toxicity tests) was conducted to explore how the mechanism of ACGPB depends on activator type and dosage. The results showed that fresh ACGPB slurry can be expressed by the Herschel-Bulkley model (R ≥ 0.965 in all recipes). With NaSO as activator type, the yield stress, apparent viscosity, thixotropy, and slump of ACGPB slurry increased with increasing activator dosage. With CaO as activator type, the yield stress, apparent viscosity, thixotropy, and slump of ACGPB slurry fluctuated with increasing activator dosage. The mechanical properties of all recipes (not including Control group and C-C1) met the mechanical requirement (3 d ≥ 0.5 MPa and 28 d ≥ 1.0 MPa). In addition, the concentrations of all heavy metals remained within the range specified by the national standard. Specifically, the activator exerted a positive effect on the stabilization/solidification of heavy metal ions (Cu, Cd, Ba, Ni, Cr, Se, and As). Finally, FTIR, TG-DTG, SEM, and hydration heat were used to analyze the microstructure of ACGPB. The research results provide a creative way for the resource utilization of solid waste.
为实现低成本绿色充填采矿,本文提出了一种新型风积沙-水泥-改性气化渣膏体充填(ACGPB)模型。该模型实现了危险固体废物的安全处置和资源利用。通过坍落度试验、单轴抗压强度试验、微观试验和浸出毒性试验等综合试验,探讨了不同激发剂类型和剂量下 ACGPB 的作用机理。结果表明,新鲜 ACGPB 浆体可用赫谢尔-布尔克模型(所有配方的 R 均≥0.965)表示。以 NaSO 作为激发剂类型,随着激发剂用量的增加,ACGPB 浆体的屈服应力、表观黏度、触变性和坍落度均增大。以 CaO 作为激发剂类型,随着激发剂用量的增加,ACGPB 浆体的屈服应力、表观黏度、触变性和坍落度呈波动变化。所有配方(不包括对照和 C-C1)的力学性能均满足力学要求(3 d≥0.5 MPa,28 d≥1.0 MPa)。此外,所有重金属的浓度均在国家标准规定的范围内。具体而言,激发剂对重金属离子(Cu、Cd、Ba、Ni、Cr、Se 和 As)的稳定/固化具有积极作用。最后,采用 FTIR、TG-DTG、SEM 和水化热分析了 ACGPB 的微观结构。研究结果为固体废物的资源化利用提供了一种创新途径。