Suppr超能文献

从头转录组分析鉴定出参与龙爪稷(鸭茅状摩擦禾)脱水胁迫响应的关键基因。

De novo transcriptome analysis identifies key genes involved in dehydration stress response in kodo millet (Paspalum scrobiculatum L.).

作者信息

Suresh Bonthala Venkata, Choudhary Pooja, Aggarwal Pooja Rani, Rana Sumi, Singh Roshan Kumar, Ravikesavan Rajasekaran, Prasad Manoj, Muthamilarasan Mehanathan

机构信息

Quantitative Genetics and Genomics of Plants, Heinrich Heine University, Düsseldorf 40225, Germany.

Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India.

出版信息

Genomics. 2022 May;114(3):110347. doi: 10.1016/j.ygeno.2022.110347. Epub 2022 Mar 23.

Abstract

Kodo millet (Paspalum scrobiculatum L.) is a small millet species known for its excellent nutritional and climate-resilient traits. To understand the genes and pathways underlying dehydration stress tolerance of kodo millet, the transcriptome of cultivar 'CO3' subjected to dehydration stress (0 h, 3 h, and 6 h) was sequenced. The study generated 239.1 million clean reads that identified 9201, 9814, and 2346 differentially expressed genes (DEGs) in 0 h vs. 3 h, 0 h vs. 6 h, and 3 h vs. 6 h libraries, respectively. The DEGs were found to be associated with vital molecular pathways, including hormone metabolism and signaling, antioxidant scavenging, photosynthesis, and cellular metabolism, and were validated using qRT-PCR. Also, a higher abundance of uncharacterized genes expressed during stress warrants further studies to characterize this class of genes to understand their role in dehydration stress response. Altogether, the study provides insights into the transcriptomic response of kodo millet during dehydration stress.

摘要

科多黍(Paspalum scrobiculatum L.)是一种小黍品种,以其优异的营养特性和气候适应能力而闻名。为了了解科多黍耐旱胁迫的基因和途径,对遭受干旱胁迫(0小时、3小时和6小时)的‘CO3’品种进行了转录组测序。该研究产生了2.391亿条clean reads,分别在0小时与3小时、0小时与6小时以及3小时与6小时的文库中鉴定出9201、9814和2346个差异表达基因(DEG)。这些DEG与重要的分子途径相关,包括激素代谢和信号传导、抗氧化清除、光合作用和细胞代谢,并通过qRT-PCR进行了验证。此外,在胁迫期间表达的未表征基因丰度较高,需要进一步研究来表征这类基因,以了解它们在脱水胁迫反应中的作用。总之,该研究为科多黍在脱水胁迫期间的转录组反应提供了见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验