Suppr超能文献

比较美国各地的雨水水质和流域类型:一种机器学习方法。

Comparing stormwater quality and watershed typologies across the United States: A machine learning approach.

机构信息

Department of Landscape Architecture and Environmental Planning, University of California, Berkeley, 202 Bauer Wurster Hall #2000, Berkeley, CA 94720-2000.

School for Environment and Sustainability, University of Michigan 440 Church Street, Ann Arbor, MI, 48109-1041,.

出版信息

Water Res. 2022 Jun 1;216:118283. doi: 10.1016/j.watres.2022.118283. Epub 2022 Mar 11.

Abstract

Watersheds continue to be urbanized across different regions of the United States, increasing the number of impaired waterbodies due to urban stormwater. Using machine learning techniques, this study examined how stormwater quality and watershed characteristics are related at a national scale and compared stormwater quality across watersheds in diverse climates. We analyzed a selection of data from the National Stormwater Quality Database (NSQD) comprising 1,881 stormwater samples taken from 182 watersheds in 26 metropolitan areas in the United States between 1992 and 2003. Using an ensemble clustering algorithm, the stormwater quality in these samples was classified into "stormwater signatures," defined as distinct combinations of 9 contaminants including metals (Pb, Zn, Cu), particulates (TSS, TDS), and nutrients (BOD, TP, TKN, NOx). Next, multinomial logistic regression was applied to the NSQD data now classified by signature and combined with climate, weather, land use, and imperviousness data obtained from multiple sources. The results yielded 5 stormwater signatures with distinct aquatic toxicity implications and relationships to climate, weather, land use, and imperviousness: Signature 1 ("Ecotoxic and Eutrophic"), defined by high median concentrations of contaminants, likely represents the first flush in moderate-to-high imperviousness watersheds; Signature 2 ("Reduced Nitrates") represents a wet season signature, particularly for dry climates; Signature 3 ("Potentially Eutrophic") represents the first flush in low imperviousness watersheds; Signature 4 ("Elevated Particulates and Metals") represents a wet season signature, particularly on warmer days; finally, Signature 5 ("Most Dilute") is primarily a regional signature associated with the warm, wet climate of the southeastern US. This study serves as a proof-of-concept demonstrating how machine learning techniques can be used to identify patterns in high-dimensional and highly variable data. Applied to stormwater quality, these techniques identify major patterns in stormwater quality across the United States using a stormwater signature approach, which examines how contaminants co-occur and under what climate, weather, land use, and impervious conditions. The findings point to dominant processes driving stormwater generation and inform watershed monitoring, green infrastructure planning, stormwater quality under climate change, and opportunities for public engagement.

摘要

美国不同地区的流域仍在不断城市化,由于城市雨水导致受污染水体的数量不断增加。本研究使用机器学习技术,在全国范围内研究了雨水质量和流域特征之间的关系,并比较了不同气候条件下流域的雨水质量。我们分析了来自美国 26 个大都市区的 182 个流域的 1881 个雨水样本的国家雨水质量数据库(NSQD)中的一部分数据,这些样本采集时间为 1992 年至 2003 年。使用集成聚类算法,将这些样本中的雨水质量分为“雨水特征”,定义为 9 种污染物(包括金属(Pb、Zn、Cu)、颗粒物(TSS、TDS)和养分(BOD、TP、TKN、NOx))的独特组合。接下来,将多元逻辑回归应用于 NSQD 数据,现在根据特征进行分类,并与从多个来源获得的气候、天气、土地利用和不透水数据结合使用。结果产生了 5 个具有不同水生毒性含义并与气候、天气、土地利用和不透水有关的雨水特征:特征 1(“生态毒性和富营养化”),由高浓度的污染物中位数定义,可能代表高至中高不透水流域的初次冲刷;特征 2(“减少硝酸盐”)代表湿季特征,特别是在干燥气候下;特征 3(“可能富营养化”)代表低不透水流域的初次冲刷;特征 4(“颗粒物和金属升高”)代表湿季特征,特别是在温暖的日子;最后,特征 5(“最稀释”)主要是与美国东南部温暖潮湿气候有关的区域特征。本研究证明了机器学习技术如何用于识别高维和高度可变数据中的模式。将这些技术应用于雨水质量,可以使用雨水特征方法识别美国各地雨水质量的主要模式,该方法检查污染物如何共同出现以及在何种气候、天气、土地利用和不透水条件下出现。研究结果指出了驱动雨水产生的主要过程,并为流域监测、绿色基础设施规划、气候变化下的雨水质量以及公众参与提供了信息。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验