Suppr超能文献

利用时变预测因子开发 2 型糖尿病和慢性肾脏病患者的肾脏和心血管结局及死亡率的临床预测模型。

Development of clinical prediction models for renal and cardiovascular outcomes and mortality in patients with type 2 diabetes and chronic kidney disease using time-varying predictors.

机构信息

Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, United States of America.

Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, United States of America.

出版信息

J Diabetes Complications. 2022 May;36(5):108180. doi: 10.1016/j.jdiacomp.2022.108180. Epub 2022 Mar 17.

Abstract

AIMS

To develop a set of prediction models for end-stage kidney disease (ESKD), cardiovascular outcomes, and mortality in patients with type 2 diabetes (T2D) and chronic kidney disease (CKD) using commonly measured clinical variables.

METHODS

We studied 1432 participants with T2D and CKD enrolled in the Chronic Renal Insufficiency Cohort, followed for a median period of 7 years. We used Cox proportional-hazards models to model the six outcomes (ESKD, stroke, myocardial infarction (MI), congestive heart failure (CHF), death before ESKD, and all-cause mortality). We internally evaluated these models using concordance and calibration measures.

RESULTS

The newly developed six prediction models included 15 predictors: age at diabetes diagnosis, sex, blood pressure, body mass index, hemoglobin A1c, high density lipoprotein cholesterol, urine protein-to-creatinine ratio, estimated glomerular filtration rate, smoking status, and history of stroke, MI, CHF, ESKD, and amputation. The resulting models demonstrated good/strong discrimination (cross-validation C-index range: 0.70 to 0.90) and calibration.

CONCLUSIONS

This study provided an internally validated and useful tool for predicting individual adverse outcomes and mortality in patients with T2D and CKD. These models may inform optimal use of targeted health interventions.

摘要

目的

利用常用的临床变量,为 2 型糖尿病(T2D)和慢性肾脏病(CKD)患者开发一套用于预测终末期肾病(ESKD)、心血管结局和死亡率的预测模型。

方法

我们研究了在慢性肾功能不全队列中招募的 1432 名 T2D 和 CKD 患者,中位随访时间为 7 年。我们使用 Cox 比例风险模型来对 6 个结局(ESKD、中风、心肌梗死(MI)、充血性心力衰竭(CHF)、ESKD 前死亡和全因死亡率)进行建模。我们使用一致性和校准措施对内评估这些模型。

结果

新开发的 6 个预测模型包括 15 个预测因素:糖尿病诊断时的年龄、性别、血压、体重指数、糖化血红蛋白、高密度脂蛋白胆固醇、尿蛋白与肌酐比值、估算肾小球滤过率、吸烟状况以及中风、MI、CHF、ESKD 和截肢史。所得模型表现出良好/强的区分度(交叉验证 C 指数范围:0.70 至 0.90)和校准度。

结论

本研究为预测 T2D 和 CKD 患者的个体不良结局和死亡率提供了一种内部验证且有用的工具。这些模型可能为最佳利用有针对性的健康干预措施提供信息。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验