Department of Medical and Molecular Genetics, Oregon Health & Science University, Mailstop L-103, 3181 Sam Jackson Park Rd., Portland, OR 97239, USA.
Department of Pediatrics, University of Zurich, Steinwiessstrasse 75, Zurich CH-8032, Switzerland.
Mol Genet Metab. 2022 May;136(1):46-64. doi: 10.1016/j.ymgme.2022.03.008. Epub 2022 Mar 21.
Existing phenylalanine hydroxylase (PAH)-deficient mice strains are useful models of untreated or late-treated human phenylketonuria (PKU), as most contemporary therapies can only be initiated after weaning and the pups have already suffered irreversible consequences of chronic hyperphenylalaninemia (HPA) during early brain development. Therefore, we sought to evaluate whether enzyme substitution therapy with pegvaliase initiated near birth and administered repetitively to C57Bl/6-Pah mice would prevent HPA-related behavioral and cognitive deficits and form a model for early-treated PKU. The main results of three reported experiments are: 1) lifelong weekly pegvaliase treatment prevented the cognitive deficits associated with HPA in contrast to persisting deficits in mice treated with pegvaliase only as adults. 2) Cognitive deficits reappear in mice treated with weekly pegvaliase from birth but in which pegvaliase is discontinued at 3 months age. 3) Twice weekly pegvaliase injection also prevented cognitive deficits but again cognitive deficits emerged in early-treated animals following discontinuation of pegvaliase treatment during adulthood, particularly in females. In all studies, pegvaliase treatment was associated with complete correction of brain monoamine neurotransmitter content and with improved overall growth of the mice as measured by body weight. Mean total brain weight however remained low in all PAH deficient mice regardless of treatment. Application of enzyme substitution therapy with pegvaliase, initiated near birth and continued into adulthood, to PAH-deficient Pah mice models contemporary early-treated human PKU. This model will be useful for exploring the differential pathophysiologic effects of HPA at different developmental stages of the murine brain.
现有的苯丙氨酸羟化酶(PAH)缺陷型小鼠品系是未经治疗或治疗较晚的人类苯丙酮尿症(PKU)的有用模型,因为大多数当代疗法只能在断奶后开始,此时幼仔在早期大脑发育期间已经遭受了慢性高苯丙氨酸血症(HPA)的不可逆转后果。因此,我们试图评估在出生附近开始并重复给予 C57Bl/6-Pah 小鼠的酶替代疗法是否可以预防与 HPA 相关的行为和认知缺陷,并形成早期治疗 PKU 的模型。三项已报道实验的主要结果如下:1)终生每周一次的 pegvaliase 治疗可预防与 HPA 相关的认知缺陷,而在仅成年时接受 pegvaliase 治疗的小鼠中则持续存在缺陷。2)在出生时开始每周接受 pegvaliase 治疗的小鼠中,认知缺陷再次出现,但在 3 个月龄时停止 pegvaliase 治疗的小鼠中认知缺陷再次出现。3)每周两次 pegvaliase 注射也可预防认知缺陷,但在成年后停止 pegvaliase 治疗的早期治疗动物中,认知缺陷再次出现,尤其是在雌性动物中。在所有研究中,pegvaliase 治疗与脑单胺神经递质含量的完全纠正以及小鼠的整体生长(以体重衡量)有关。然而,无论治疗如何,所有 PAH 缺陷型小鼠的大脑总重量平均值均较低。在 PAH 缺陷型 Pah 小鼠模型中应用 pegvaliase 的酶替代治疗,在出生附近开始并持续到成年,用于当代早期治疗的人类 PKU。该模型将有助于探索 HPA 在小鼠大脑不同发育阶段的差异病理生理影响。