University of Modena and Reggio Emilia, Via Vivarelli 10/1, 41125 Modena, Italy.
Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, Italy.
J Biomed Inform. 2022 May;129:104057. doi: 10.1016/j.jbi.2022.104057. Epub 2022 Mar 24.
It is estimated that oncogenic gene fusions cause about 20% of human cancer morbidity. Identifying potentially oncogenic gene fusions may improve affected patients' diagnosis and treatment. Previous approaches to this issue included exploiting specific gene-related information, such as gene function and regulation. Here we propose a model that profits from the previous findings and includes the microRNAs in the oncogenic assessment. We present ChimerDriver, a tool to classify gene fusions as oncogenic or not oncogenic. ChimerDriver is based on a specifically designed neural network and trained on genetic and post-transcriptional information to obtain a reliable classification. The designed neural network integrates information related to transcription factors, gene ontologies, microRNAs and other detailed information related to the functions of the genes involved in the fusion and the gene fusion structure. As a result, the performances on the test set reached 0.83 f1-score and 96% recall. The comparison with state-of-the-art tools returned comparable or higher results. Moreover, ChimerDriver performed well in a real-world case where 21 out of 24 validated gene fusion samples were detected by the gene fusion detection tool Starfusion. ChimerDriver integrates transcriptional and post-transcriptional information in an ad-hoc designed neural network to effectively discriminate oncogenic gene fusions from passenger ones. ChimerDriver source code is freely available at https://github.com/martalovino/ChimerDriver.
据估计,致癌基因融合导致约 20%的人类癌症发病率。鉴定潜在的致癌基因融合可能会改善受影响患者的诊断和治疗。以前解决这个问题的方法包括利用特定的基因相关信息,如基因功能和调控。在这里,我们提出了一个利用以前的发现并包括致癌评估中的 microRNA 的模型。我们提出了 ChimerDriver,这是一种将基因融合分类为致癌或非致癌的工具。ChimerDriver 基于专门设计的神经网络,并基于遗传和转录后信息进行训练,以获得可靠的分类。设计的神经网络整合了与转录因子、基因本体、microRNA 以及与融合涉及的基因和基因融合结构的功能相关的其他详细信息相关的信息。结果,测试集上的性能达到了 0.83 f1 分数和 96%的召回率。与最先进的工具的比较返回了可比或更高的结果。此外,ChimerDriver 在一个真实案例中表现良好,其中 Starfusion 基因融合检测工具检测到 24 个验证的基因融合样本中的 21 个。ChimerDriver 在一个专门设计的神经网络中集成转录和转录后信息,有效地将致癌基因融合与乘客基因融合区分开来。ChimerDriver 的源代码可在 https://github.com/martalovino/ChimerDriver 上免费获得。