Suppr超能文献

基于 BiLSTM-Attention 的早期预警评分在急诊产科预检分诊中的临床应用。

Clinical Application of Early Warning Scoring Based on BiLSTM-Attention in Emergency Obstetric Preexamination and Triage.

机构信息

Department of Emergency, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou 730050, Gansu, China.

Department of Obstetrics and Gynecology, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou 730050, China.

出版信息

J Healthc Eng. 2022 Mar 16;2022:6274230. doi: 10.1155/2022/6274230. eCollection 2022.

Abstract

Maternity is a special category of population and the criteria for emergency prescreening cannot be directly applied to adults. Therefore, a set of criteria for grading maternal conditions should be established. In this paper, we have combined the semantic analysis technique of BiLSTM-Attention neural network and fuzzy defect risk assessment method, to develop a hybrid approach, to preprocess the text of emergency obstetric prescreening information. Furthermore, we have used word2vec to characterize the word embedding vector and highlight the features related to the degree of defects of emergency obstetric prescreening information through the attention mechanism and obtain the semantic feature vector of the warning information. BiLSTM-Attention neural network has the dual advantages of extracting bidirectional semantic information and giving weight to important judgment information which has effectively improved the semantic understanding accuracy. Experimental tests and application analysis show that the judgment model which is based on proposed method has accurately classified and graded the defects of emergency obstetric prescreening alerts. Additionally, the accuracy and microaverage value are used as evaluation indexes.

摘要

孕产妇属于特殊人群,不能直接将成人的急诊预检标准应用于孕产妇。因此,应该建立一套孕产妇病情分级标准。本文将双向长短期记忆网络(BiLSTM)-注意力机制的语义分析技术与模糊缺陷风险评估方法相结合,开发一种混合方法,对急诊产科预检信息的文本进行预处理。此外,本文还使用 word2vec 对词嵌入向量进行特征化,并通过注意力机制突出与急诊产科预检信息缺陷程度相关的特征,从而获得警告信息的语义特征向量。BiLSTM-注意力神经网络具有提取双向语义信息和为重要判断信息加权的双重优势,有效地提高了语义理解的准确性。实验测试和应用分析表明,基于所提出方法的判断模型能够准确地对急诊产科预检警告进行分类和分级。此外,还使用准确率和微平均值作为评价指标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/686a/8942667/d666175270db/JHE2022-6274230.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验