College of Information Science and Engineering, Northeastern University, Shenyang 110819, China.
State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang 110819, China.
Comput Intell Neurosci. 2022 Mar 18;2022:8172466. doi: 10.1155/2022/8172466. eCollection 2022.
For public security and crime prevention, the detection of prohibited items in X-ray security inspection based on deep learning has attracted widespread attention. However, the pseudocolor image dataset is scarce due to security, which brings an enormous challenge to the detection of prohibited items in X-ray security inspection. In this paper, a data augmentation method for prohibited item X-ray pseudocolor images in X-ray security inspection is proposed. Firstly, we design a framework of our method to achieve the dataset augmentation using the datasets with and without prohibited items. Secondly, in the framework, we design a spatial-and-channel attention block and a new base block to compose our X-ray Wasserstein generative adversarial network model with gradient penalty. The model directly generates high-quality dual-energy X-ray data instead of pseudocolor images. Thirdly, we design a composite strategy to composite the generated and real dual-energy X-ray data with background data into a new X-ray pseudocolor image, which can simulate the real overlapping relationship among items. Finally, two object detection models with and without our data augmentation method are applied to verify the effectiveness of our method. The experimental results demonstrate that our method can achieve the data augmentation for prohibited item X-ray pseudocolor images in X-ray security inspection effectively.
为了公共安全和犯罪预防,基于深度学习的 X 射线安检违禁品检测受到了广泛关注。然而,由于安全原因,伪彩色图像数据集稀缺,这给 X 射线安检违禁品检测带来了巨大挑战。本文提出了一种 X 射线安检中违禁品 X 射线伪彩色图像的数据增强方法。首先,我们设计了一个框架,使用有和没有违禁品的数据集来实现数据集的扩充。其次,在框架中,我们设计了一个空间和通道注意力块和一个新的基础块,以组成带有梯度惩罚的 X 射线 Wasserstein 生成对抗网络模型。该模型直接生成高质量的双能 X 射线数据,而不是伪彩色图像。第三,我们设计了一种综合策略,将生成的和真实的双能 X 射线数据与背景数据综合成一个新的 X 射线伪彩色图像,可以模拟物品之间的真实重叠关系。最后,应用带有和不带有我们的数据增强方法的两个目标检测模型来验证我们方法的有效性。实验结果表明,我们的方法可以有效地实现 X 射线安检中违禁品 X 射线伪彩色图像的数据增强。