Suppr超能文献

利用绿色荧光蛋白的 DNA 适体模拟物检测 SARS-CoV-2 RNA。

Detection of SARS-CoV-2 RNA Using a DNA Aptamer Mimic of Green Fluorescent Protein.

机构信息

Department of Pharmacology, Weill-Cornell Medical College, Cornell University, New York, New York 10065, United States.

Tri-Institutional PhD Program in Chemical Biology, Weill Cornell Medicine, Memorial Sloan Kettering Cancer Center, The Rockefeller University, New York, New York 10065, United States.

出版信息

ACS Chem Biol. 2022 Apr 15;17(4):840-853. doi: 10.1021/acschembio.1c00893. Epub 2022 Mar 26.

Abstract

RNA detection is important in diverse diagnostic and analytical applications. RNAs can be rapidly detected using molecular beacons, which fluoresce upon hybridizing to a target RNA but require oligonucleotides with complex fluorescent dye and quencher conjugations. Here, we describe a simplified method for rapid fluorescence detection of a target RNA using simple unmodified DNA oligonucleotides. To detect RNA, we developed Lettuce, a fluorogenic DNA aptamer that binds and activates the fluorescence of DFHBI-1T, an otherwise nonfluorescent molecule that resembles the chromophore found in green fluorescent protein. Lettuce was selected from a randomized DNA library based on binding to DFHBI-agarose. We further show that Lettuce can be split into two separate oligonucleotide components, which are nonfluorescent on their own but become fluorescent when their proximity is induced by a target RNA. We designed several pairs of split Lettuce fragments that contain an additional 15-20 nucleotides that are complementary to adjacent regions of the SARS-CoV-2 RNA, resulting in Lettuce fluorescence only in the presence of the viral RNA. Overall, these studies describe a simplified RNA detection approach using fully unmodified DNA oligonucleotides that reconstitute the Lettuce aptamer templated by RNA.

摘要

RNA 检测在各种诊断和分析应用中都很重要。可以使用分子信标快速检测 RNA,当与靶 RNA 杂交时,分子信标会发出荧光,但需要具有复杂荧光染料和淬灭剂结合的寡核苷酸。在这里,我们描述了一种使用简单未修饰的 DNA 寡核苷酸快速检测靶 RNA 的简化方法。为了检测 RNA,我们开发了 Lettuce,它是一种荧光 DNA 适体,可与 DFHBI-1T 结合并激活其荧光,DFHBI-1T 是一种原本没有荧光的分子,类似于绿色荧光蛋白中的发色团。Lettuce 是根据与 DFHBI-琼脂糖的结合从随机化的 DNA 文库中选择的。我们进一步表明,Lettuce 可以分裂成两个单独的寡核苷酸组件,它们本身没有荧光,但当其接近由靶 RNA 诱导时,它们会变得荧光。我们设计了几对分裂的 Lettuce 片段,它们包含另外 15-20 个与 SARS-CoV-2 RNA 相邻区域互补的核苷酸,只有在存在病毒 RNA 的情况下,才会产生 Lettuce 荧光。总的来说,这些研究描述了一种使用完全未修饰的 DNA 寡核苷酸进行简化 RNA 检测的方法,该方法重新构成了由 RNA 模板化的 Lettuce 适体。

相似文献

1
Detection of SARS-CoV-2 RNA Using a DNA Aptamer Mimic of Green Fluorescent Protein.
ACS Chem Biol. 2022 Apr 15;17(4):840-853. doi: 10.1021/acschembio.1c00893. Epub 2022 Mar 26.
2
Programmable RNA detection with a fluorescent RNA aptamer using optimized three-way junction formation.
RNA. 2019 May;25(5):590-599. doi: 10.1261/rna.069062.118. Epub 2019 Feb 11.
3
Rapid one-pot isothermal amplification reassembled of fluorescent RNA aptamer for SARS-CoV-2 detection.
Talanta. 2024 Aug 15;276:126264. doi: 10.1016/j.talanta.2024.126264. Epub 2024 May 17.
4
Facile conversion of ATP-binding RNA aptamer to quencher-free molecular aptamer beacon.
Bioorg Med Chem Lett. 2018 Jan 15;28(2):77-80. doi: 10.1016/j.bmcl.2017.12.008. Epub 2017 Dec 6.
6
Photophysics of DFHBI bound to RNA aptamer Baby Spinach.
Sci Rep. 2021 Apr 1;11(1):7356. doi: 10.1038/s41598-021-85091-y.
7
Sensitive fluorescence detection of SARS-CoV-2 RNA in clinical samples via one-pot isothermal ligation and transcription.
Nat Biomed Eng. 2020 Dec;4(12):1168-1179. doi: 10.1038/s41551-020-00617-5. Epub 2020 Sep 18.
8
Visualizing RNA in Live Bacterial Cells Using Fluorophore- and Quencher-Binding Aptamers.
Methods Mol Biol. 2018;1649:289-304. doi: 10.1007/978-1-4939-7213-5_19.
9
Structural Principles of Fluorescent RNA Aptamers.
Trends Pharmacol Sci. 2017 Oct;38(10):928-939. doi: 10.1016/j.tips.2017.06.007. Epub 2017 Jul 17.
10
Mix-and-read, one-minute SARS-CoV-2 diagnostic assay: development of PIFE-based aptasensor.
Chem Commun (Camb). 2021 Oct 5;57(79):10222-10225. doi: 10.1039/d1cc04066a.

引用本文的文献

1
Genetically Encoded Fluorogenic DNA Aptamers for Imaging Metabolite in Living Cells.
J Am Chem Soc. 2025 Jan 15;147(2):1529-1541. doi: 10.1021/jacs.4c09855. Epub 2024 Dec 31.
2
Rapid discovery and evolution of nanosensors containing fluorogenic amino acids.
Nat Commun. 2024 Sep 5;15(1):7531. doi: 10.1038/s41467-024-50956-z.
3
Fluorogenic RNA-Based Biosensors of Small Molecules: Current Developments, Uses, and Perspectives.
Biosensors (Basel). 2024 Aug 1;14(8):376. doi: 10.3390/bios14080376.
6
DNA-Aptamer-Based qPCR Using Light-Up Dyes for the Detection of Nucleic Acids.
ACS Omega. 2023 Nov 28;8(49):47277-47282. doi: 10.1021/acsomega.3c07599. eCollection 2023 Dec 12.
7
Intricate 3D architecture of a DNA mimic of GFP.
Nature. 2023 Jun;618(7967):1078-1084. doi: 10.1038/s41586-023-06229-8. Epub 2023 Jun 21.
8
Multidimensional futuristic approaches to address the pandemics beyond COVID-19.
Heliyon. 2023 Jun;9(6):e17148. doi: 10.1016/j.heliyon.2023.e17148. Epub 2023 Jun 11.
9
A self-assembling split aptamer multiplex assay for SARS-COVID19 and miniaturization of a malachite green DNA-based aptamer.
Sens Actuators Rep. 2022 Nov;4:100125. doi: 10.1016/j.snr.2022.100125. Epub 2022 Nov 5.

本文引用的文献

1
Repurposing an adenine riboswitch into a fluorogenic imaging and sensing tag.
Nat Chem Biol. 2022 Feb;18(2):180-190. doi: 10.1038/s41589-021-00925-0. Epub 2021 Dec 22.
2
Imaging Intracellular -Adenosyl Methionine Dynamics in Live Mammalian Cells with a Genetically Encoded Red Fluorescent RNA-Based Sensor.
J Am Chem Soc. 2020 Aug 19;142(33):14117-14124. doi: 10.1021/jacs.0c02931. Epub 2020 Aug 7.
3
An Infectious cDNA Clone of SARS-CoV-2.
Cell Host Microbe. 2020 May 13;27(5):841-848.e3. doi: 10.1016/j.chom.2020.04.004. Epub 2020 Apr 13.
4
Fluorophore-Promoted RNA Folding and Photostability Enables Imaging of Single Broccoli-Tagged mRNAs in Live Mammalian Cells.
Angew Chem Int Ed Engl. 2020 Mar 9;59(11):4511-4518. doi: 10.1002/anie.201914576. Epub 2020 Jan 28.
5
Structure and functional reselection of the Mango-III fluorogenic RNA aptamer.
Nat Chem Biol. 2019 May;15(5):472-479. doi: 10.1038/s41589-019-0267-9. Epub 2019 Apr 15.
6
Encoding canonical DNA quadruplex structure.
Sci Adv. 2018 Aug 31;4(8):eaat3007. doi: 10.1126/sciadv.aat3007. eCollection 2018 Aug.
7
A homodimer interface without base pairs in an RNA mimic of red fluorescent protein.
Nat Chem Biol. 2017 Nov;13(11):1195-1201. doi: 10.1038/nchembio.2475. Epub 2017 Sep 25.
8
Imaging RNA polymerase III transcription using a photostable RNA-fluorophore complex.
Nat Chem Biol. 2017 Nov;13(11):1187-1194. doi: 10.1038/nchembio.2477. Epub 2017 Sep 25.
9
Structural Principles of Fluorescent RNA Aptamers.
Trends Pharmacol Sci. 2017 Oct;38(10):928-939. doi: 10.1016/j.tips.2017.06.007. Epub 2017 Jul 17.
10
Split Spinach Aptamer for Highly Selective Recognition of DNA and RNA at Ambient Temperatures.
Chembiochem. 2016 Sep 2;17(17):1589-92. doi: 10.1002/cbic.201600323. Epub 2016 Jul 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验