Department of Genetics, Harvard Medical School, Boston, MA, USA.
Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
Nat Commun. 2024 Sep 5;15(1):7531. doi: 10.1038/s41467-024-50956-z.
Binding-activated optical sensors are powerful tools for imaging, diagnostics, and biomolecular sensing. However, biosensor discovery is slow and requires tedious steps in rational design, screening, and characterization. Here we report on a platform that streamlines biosensor discovery and unlocks directed nanosensor evolution through genetically encodable fluorogenic amino acids (FgAAs). Building on the classical knowledge-based semisynthetic approach, we engineer 15 kDa nanosensors that recognize specific proteins, peptides, and small molecules with up to 100-fold fluorescence increases and subsecond kinetics, allowing real-time and wash-free target sensing and live-cell bioimaging. An optimized genetic code expansion chemistry with FgAAs further enables rapid (3 h) ribosomal nanosensor discovery via the cell-free translation of hundreds of candidates in parallel and directed nanosensor evolution with improved variant-specific sensitivities (up to ~250-fold) for SARS-CoV-2 antigens. Altogether, this platform could accelerate the discovery of fluorogenic nanosensors and pave the way to modify proteins with other non-standard functionalities for diverse applications.
结合激活的光学传感器是用于成像、诊断和生物分子传感的强大工具。然而,生物传感器的发现速度很慢,需要在合理设计、筛选和表征方面进行繁琐的步骤。在这里,我们报告了一个平台,该平台通过可遗传编码的荧光氨基酸 (FgAAs) 简化了生物传感器的发现,并解锁了定向纳米传感器的进化。在经典的基于知识的半合成方法的基础上,我们设计了15 kDa 的纳米传感器,这些传感器可以识别具有高达 100 倍荧光增强和亚秒级动力学的特定蛋白质、肽和小分子,从而能够实时、免洗地进行目标传感和活细胞生物成像。优化的遗传密码扩展化学与 FgAAs 进一步使我们能够通过细胞游离翻译平行筛选数百个候选物,快速 (3 小时) 发现核糖体纳米传感器,并通过改进针对 SARS-CoV-2 抗原的变体特异性敏感性 (高达~250 倍) 进行定向纳米传感器进化。总的来说,该平台可以加速荧光纳米传感器的发现,并为修饰具有其他非标准功能的蛋白质铺平道路,以用于各种应用。