Department of Chemistry, Yale University, New Haven, CT 06520, USA.
Philos Trans A Math Phys Eng Sci. 2022 May 16;380(2223):20200377. doi: 10.1098/rsta.2020.0377. Epub 2022 Mar 28.
The Born-Oppenheimer approximation, which assumes that the electrons respond instantaneously to the motion of the nuclei, breaks down for a wide range of chemical and biological processes. The rate constants of such nonadiabatic processes can be calculated using analytical theories, and the real-time nonequilibrium dynamics can be described using numerical atomistic simulations. The selection of an approach depends on the desired balance between accuracy and efficiency. The computational expense of generating potential energy surfaces on-the-fly often favours the use of approximate, robust and efficient methods such as trajectory surface hopping for large, complex systems. The development of formally exact non-Born-Oppenheimer methods and the exploration of well-defined approximations to such methods are critical for providing benchmarks and preparing for the next generation of faster computers. Thus, the parallel development of rigorous but computationally expensive methods and more approximate but computationally efficient methods is optimal. This Perspective briefly summarizes the available theoretical and computational non-Born-Oppenheimer methods and presents examples illustrating how analytical theories and nonadiabatic dynamics simulations can elucidate the fundamental principles of chemical and biological processes. These examples also highlight how theoretical calculations are able to guide the interpretation of experimental data and provide experimentally testable predictions for nonadiabatic processes. This article is part of the theme issue 'Chemistry without the Born-Oppenheimer approximation'.
玻恩-奥本海默近似假定电子可以瞬时响应原子核的运动,但它在广泛的化学和生物过程中失效。可以使用分析理论计算此类非绝热过程的速率常数,并且可以使用数值原子模拟来描述实时非平衡动力学。方法的选择取决于所需的准确性和效率之间的平衡。实时生成势能面的计算费用通常有利于使用近似、鲁棒和高效的方法,例如轨迹表面跳跃法,用于大型复杂系统。正式的非玻恩-奥本海默方法的发展以及此类方法的明确近似的探索对于提供基准和为下一代更快的计算机做好准备至关重要。因此,严格但计算成本高的方法和更近似但计算效率高的方法的并行开发是最佳选择。本文简要总结了现有的理论和计算非玻恩-奥本海默方法,并举例说明了分析理论和非绝热动力学模拟如何阐明化学和生物过程的基本原理。这些示例还突出了理论计算如何能够指导实验数据的解释,并为非绝热过程提供可实验验证的预测。本文是“超越玻恩-奥本海默近似的化学”主题特刊的一部分。