Suppr超能文献

影响甲烷氧化细菌群落的环境因素

Environmental Factors Affecting the Community of Methane-oxidizing Bacteria.

作者信息

Kambara Hiromi, Shinno Takahiro, Matsuura Norihisa, Matsushita Shuji, Aoi Yoshiteru, Kindaichi Tomonori, Ozaki Noriatsu, Ohashi Akiyoshi

机构信息

Department of Civil and Environmental Engineering, Graduate School of Engineering, Hiroshima University.

Faculty of Geosciences and Civil Engineering, Kanazawa University.

出版信息

Microbes Environ. 2022;37(1). doi: 10.1264/jsme2.ME21074.

Abstract

Methane-oxidizing bacteria (MOB) are ubiquitous and play an important role in the mitigation of global warming by reducing methane. MOB are commonly classified into Type I and Type II, belonging to Gammaproteobacteria and Alphaproteobacteria, respectively, and the diversity of MOB has been examined. However, limited information is currently available on favorable environments for the respective MOB. To investigate the environmental factors affecting the dominant type in the MOB community, we performed MOB enrichment using down-flow hanging sponge reactors under 38 different environmental conditions with a wide range of methane (0.01-80%) and ammonium concentrations (0.001-2,000‍ ‍mg N L) and pH 4-7. Enrichment results revealed that pH was a crucial factor influencing the MOB type enriched. Type II was dominantly enriched at low pH (4-5), whereas Type I was dominant around neutral pH (6-7). However, there were some unusual cultivated biomass samples. Even though high methane oxidation activity was observed, very few or zero conventional MOB were detected using common FISH probes and primer sets for the 16S rRNA gene and pmoA gene amplification. Mycobacterium mostly dominated the microbial community in the biomass cultivated at very high NH concentrations, strongly implying that it exhibits methane oxidation activity. Collectively, the present results revealed the presence of many unknown phylogenetic groups with the capacity for methane oxidation other than the reported MOB.

摘要

甲烷氧化细菌(MOB)广泛存在,通过减少甲烷排放对缓解全球变暖起着重要作用。MOB通常分为I型和II型,分别属于γ-变形菌纲和α-变形菌纲,其多样性已得到研究。然而,目前关于不同MOB适宜环境的信息有限。为了研究影响MOB群落优势类型的环境因素,我们使用下流式悬挂海绵反应器,在38种不同环境条件下进行了MOB富集培养,这些条件涵盖了广泛的甲烷浓度(0.01%-80%)、铵浓度(0.001-2000mg N/L)以及pH值范围(4-7)。富集结果表明,pH是影响富集的MOB类型的关键因素。II型在低pH值(4-5)条件下占主导,而I型在接近中性的pH值(6-7)条件下占主导。然而,存在一些异常的培养生物量样本。尽管观察到高甲烷氧化活性,但使用用于16S rRNA基因和pmoA基因扩增的常见荧光原位杂交(FISH)探针和引物对检测到的传统MOB很少或为零。在高铵浓度下培养的生物量中,分枝杆菌在微生物群落中占主导地位,这强烈表明它具有甲烷氧化活性。总体而言,目前的结果表明,除了已报道的MOB外,还存在许多具有甲烷氧化能力的未知系统发育类群。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ffb5/8958294/2f4aeb2b7ab9/37_21074-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验