Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka, Koganei, Tokyo 184-8588, Japan.
Department of Civil and Environmental Engineering Science, Institute IWAR, Chair of Wastewater Engineering, Technische Universität Darmstadt, Franziska-Braun-Straße 7, 64287 Darmstadt, Germany.
J Biosci Bioeng. 2020 Sep;130(3):311-318. doi: 10.1016/j.jbiosc.2020.04.006. Epub 2020 May 30.
Methane-oxidizing bacteria (MOB) possess the metabolic potential to assimilate the highly potent greenhouse gas, CH, and can also synthesize valuable products. Depending on their distinct and fastidious metabolic pathways, MOB are mainly divided into Type I and Type II; the latter are known as producers of polyhydroxyalkanoate (PHA). Despite the metabolic potential of MOB to synthesize PHA, the ecophysiology of MOB, especially under high CH flux conditions, is yet to be understood. Therefore, in this study, a rice paddy soil receiving a high CH flux from underground was used as an inoculum to enrich MOB using fed-batch operation, then the enriched Type II MOB were characterized. The transitions in the microbial community composition and CH oxidation rates were monitored by 16S rRNA gene amplicon sequencing and degree of CH consumption. With increasing incubation time, the initially dominant Methylomonas sp., affiliated with Type I MOB, was gradually replaced with Methylocystis sp., Type II MOB, resulting in a maximum CH oxidation rate of 1.40 g-CH/g-biomass/day. The quantification of functional genes encoding methane monooxygenase, pmoA and PHA synthase, phaC, by quantitative PCR revealed concomitant increases in accordance with the Type II MOB enrichment. These increases in the functional genes underscore the significance of Type II MOB to mitigate greenhouse gas emission and produce PHA.
甲烷氧化菌(Methane-oxidizing bacteria,MOB)具有同化高活性温室气体 CH 的代谢潜力,并且还可以合成有价值的产品。根据其独特而苛刻的代谢途径,MOB 主要分为 I 型和 II 型;后者被称为聚羟基烷酸酯(polyhydroxyalkanoate,PHA)的生产者。尽管 MOB 具有合成 PHA 的代谢潜力,但 MOB 的生态生理学,特别是在高 CH 通量条件下,尚未得到充分理解。因此,在这项研究中,使用从地下接收高 CH 通量的稻田土壤作为接种物,通过分批进料操作来富集 MOB,然后对富集的 II 型 MOB 进行了表征。通过 16S rRNA 基因扩增子测序和 CH 消耗程度监测微生物群落组成和 CH 氧化速率的转变。随着孵育时间的增加,最初占主导地位的 I 型 MOB 中的 Methylomonas sp.逐渐被 II 型 MOB 中的 Methylocystis sp.取代,导致 CH 氧化速率达到最大值 1.40 g-CH/g-生物质/天。通过定量 PCR 对编码甲烷单加氧酶的功能基因(pmoA 和 PHA 合酶)phaC 的定量显示,与 II 型 MOB 的富集相伴随的增加。这些功能基因的增加强调了 II 型 MOB 在减轻温室气体排放和生产 PHA 方面的重要性。