Suppr超能文献

FERGCN:基于图卷积网络的面部表情识别

FERGCN: facial expression recognition based on graph convolution network.

作者信息

Liao Lei, Zhu Yu, Zheng Bingbing, Jiang Xiaoben, Lin Jiajun

机构信息

School of Information Science and Engineering, East China University of Science and Technology, Shanghai, 200237 China.

Shanghai Engineering Research Center of Internet of Things for Respiratory Medicine, Shanghai, 200032 China.

出版信息

Mach Vis Appl. 2022;33(3):40. doi: 10.1007/s00138-022-01288-9. Epub 2022 Mar 22.

Abstract

Due to the problems of occlusion, pose change, illumination change, and image blur in the wild facial expression dataset, it is a challenging computer vision problem to recognize facial expressions in a complex environment. To solve this problem, this paper proposes a deep neural network called facial expression recognition based on graph convolution network (FERGCN), which can effectively extract expression information from the face in a complex environment. The proposed FERGCN includes three essential parts. First, a feature extraction module is designed to obtain the global feature vectors from convolutional neural networks branch with triplet attention and the local feature vectors from key point-guided attention branch. Then, the proposed graph convolutional network uses the correlation between global features and local features to enhance the expression information of the non-occluded part, based on the topology graph of key points. Furthermore, the graph-matching module uses the similarity between images to enhance the network's ability to distinguish different expressions. Results on public datasets show that our FERGCN can effectively recognize facial expressions in real environment, with RAF-DB of 88.23%, SFEW of 56.15% and AffectNet of 62.03%.

摘要

由于野生面部表情数据集中存在遮挡、姿态变化、光照变化和图像模糊等问题,在复杂环境中识别面部表情是一个具有挑战性的计算机视觉问题。为了解决这个问题,本文提出了一种基于图卷积网络的面部表情识别深度神经网络(FERGCN),它可以在复杂环境中有效地从面部提取表情信息。所提出的FERGCN包括三个重要部分。首先,设计了一个特征提取模块,从具有三重注意力的卷积神经网络分支中获取全局特征向量,并从关键点引导注意力分支中获取局部特征向量。然后,所提出的图卷积网络基于关键点拓扑图,利用全局特征和局部特征之间的相关性来增强非遮挡部分的表情信息。此外,图匹配模块利用图像之间的相似性来增强网络区分不同表情的能力。在公共数据集上的结果表明,我们的FERGCN能够在真实环境中有效地识别面部表情,在RAF-DB数据集上的准确率为88.23%,在SFEW数据集上为56.15%,在AffectNet数据集上为62.03%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5766/8939244/10c5b0807a3a/138_2022_1288_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验