Suppr超能文献

用于面部表情识别的保图稀疏非负矩阵分解

Graph-preserving sparse nonnegative matrix factorization with application to facial expression recognition.

作者信息

Zhi Ruicong, Flierl Markus, Ruan Qiuqi, Kleijn W Bastiaan

机构信息

Institute of Information Science, Beijing Jiaotong University, Beijing 100044, China.

出版信息

IEEE Trans Syst Man Cybern B Cybern. 2011 Feb;41(1):38-52. doi: 10.1109/TSMCB.2010.2044788. Epub 2010 Apr 15.

Abstract

In this paper, a novel graph-preserving sparse nonnegative matrix factorization (GSNMF) algorithm is proposed for facial expression recognition. The GSNMF algorithm is derived from the original NMF algorithm by exploiting both sparse and graph-preserving properties. The latter may contain the class information of the samples. Therefore, GSNMF can be conducted as an unsupervised or a supervised dimension reduction method. A sparse representation of the facial images is obtained by minimizing the l(1)-norm of the basis images. Furthermore, according to the graph embedding theory, the neighborhood of the samples is preserved by retaining the graph structure in the mapped space. The GSNMF decomposition transforms the high-dimensional facial expression images into a locality-preserving subspace with sparse representation. To guarantee convergence, we use the projected gradient method to calculate the nonnegative solution of GSNMF. Experiments are conducted on the JAFFE database and the Cohn-Kanade database with unoccluded and partially occluded facial images. The results show that the GSNMF algorithm provides better facial representations and achieves higher recognition rates than nonnegative matrix factorization. Moreover, GSNMF is also more robust to partial occlusions than other tested methods.

摘要

本文提出了一种用于面部表情识别的新颖的保图稀疏非负矩阵分解(GSNMF)算法。GSNMF算法是通过利用稀疏和保图特性从原始非负矩阵分解(NMF)算法推导而来的。后者可能包含样本的类别信息。因此,GSNMF既可以作为无监督降维方法,也可以作为有监督降维方法来进行。通过最小化基图像的l(1)范数来获得面部图像的稀疏表示。此外,根据图嵌入理论,通过在映射空间中保留图结构来保持样本的邻域关系。GSNMF分解将高维面部表情图像转换为具有稀疏表示的局部保持子空间。为了保证收敛性,我们使用投影梯度法来计算GSNMF的非负解。在JAFFE数据库和Cohn-Kanade数据库上对未遮挡和部分遮挡的面部图像进行了实验。结果表明,GSNMF算法提供了更好的面部表示,并且比非负矩阵分解实现了更高的识别率。此外,与其他测试方法相比,GSNMF对部分遮挡也更具鲁棒性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验