Suppr超能文献

单病例实验设计中一些基于重叠和距离的测量方法的统计决策准确性

Statistical Decision-Making Accuracies for Some Overlap- and Distance-based Measures for Single-Case Experimental Designs.

作者信息

Carlin Michael T, Costello Mack S

机构信息

Department of Psychology, Rider University, 2083 Lawrenceville Road, Lawrenceville, NJ 08648 USA.

出版信息

Perspect Behav Sci. 2021 Nov 22;45(1):187-207. doi: 10.1007/s40614-021-00317-8. eCollection 2022 Mar.

Abstract

UNLABELLED

Selecting a quantitative measure to guide decision making in single-case experimental designs (SCEDs) is complicated. Many measures exist and all have been rightly criticized. The two general classes of measure are overlap-based (e.g., percentage nonoverlapping data) and distance-based (e.g., Cohen's ). We compare several measures from each category for Type I error rate and power across a range of designs using equal numbers of observations (i.e., 3-10) in each phase. Results showed that Tau and the distance-based measures (i.e., RD and ) provided the highest decision accuracies. Other overlap-based measures (e.g., PND, dual-criterion method) did not perform as well. It is recommended that Tau be used to guide decision making about the presence/absence of a treatment effect, and RD or be used to quantify the magnitude of the treatment effect.

SUPPLEMENTARY INFORMATION

The online version contains supplementary material available at 10.1007/s40614-021-00317-8.

摘要

未标注

在单案例实验设计(SCEDs)中选择一种定量测量方法来指导决策是复杂的。存在许多测量方法,并且所有这些方法都受到了合理的批评。测量方法的两个一般类别是基于重叠的(例如,非重叠数据百分比)和基于距离的(例如,科恩d值)。我们在每个阶段使用相等数量的观察值(即3 - 10个),针对一系列设计比较了每个类别中的几种测量方法的I型错误率和功效。结果表明,Tau和基于距离的测量方法(即RD和d值)提供了最高的决策准确性。其他基于重叠的测量方法(例如,PND,双标准方法)表现不佳。建议使用Tau来指导关于治疗效果是否存在的决策,使用RD或d值来量化治疗效果的大小。

补充信息

在线版本包含可在10.1007/s40614 - 021 - 00317 - 8获取的补充材料。

相似文献

5
Power analysis for single-case designs: Computations for (AB) designs.单案例设计的功效分析:(AB)设计的计算。
Behav Res Methods. 2023 Oct;55(7):3494-3503. doi: 10.3758/s13428-022-01971-9. Epub 2022 Oct 12.
9
Assessing Consistency in Single-Case A-B-A-B Phase Designs.评估单病例 A-B-A-B 设计中的一致性。
Behav Modif. 2020 Jul;44(4):518-551. doi: 10.1177/0145445519837726. Epub 2019 Mar 31.

本文引用的文献

1
Machine Learning to Analyze Single-Case Data: A Proof of Concept.机器学习分析单病例数据:概念验证
Perspect Behav Sci. 2020 Jan 21;43(1):21-38. doi: 10.1007/s40614-020-00244-0. eCollection 2020 Mar.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验