Suppr超能文献

为小学生急性腰椎峡部裂制定临床算法——分类回归树分析。

Developing clinical algorithm for identifying acute lumbar spondylolysis in elementary school children - Classification and regression tree analysis.

机构信息

Forest Orthopaedic Sports Clinic, Maebashi, Japan.

Graduate School of Health Sciences, Gunma University, Maebashi, Japan.

出版信息

J Man Manip Ther. 2022 Dec;30(6):342-349. doi: 10.1080/10669817.2022.2056310. Epub 2022 Mar 27.

Abstract

OBJECTIVES

To develop a clinical algorithm for classifying acute lumbar spondylolysis from nonspecific low back pain in elementary school-aged patients using the classification and regression tree analysis.

METHODS

Medical records of 73 school-aged patients diagnosed with acute lumbar spondylolysis or nonspecific low back pain were retrospectively reviewed. Fifty-eight patients were examined for establishing an algorithm and 15 were employed for testing its performance. The following data were retrieved: age, gender, school grades, days after symptom onset, history of low back pain, days of past low back pain, height, weight, body mass index, passive straight leg raise test results, hours per week spent on sports activities, existence of spina bifida, lumbar lordosis angle, and lumbosacral joint angle. Classification and regression tree analyses were performed 150 times using the bootstrap and aggregating method. Then, the results were integrated by majority vote, establishing an algorithm.

RESULTS

Lumbar lordosis angle, days after symptom onset, body mass index, and lumbosacral joint angle were the predictors for classifying those injuries.

CONCLUSION

The algorithm can be used to identify elementary school-aged children with low back pain requiring advanced imaging investigation, although a future study with a larger sample population is necessary for validating the algorithm.

摘要

目的

使用分类回归树分析,为小学年龄段患者的急性腰椎峡部裂与非特异性下腰痛建立临床分类算法。

方法

回顾性分析了 73 例确诊为急性腰椎峡部裂或非特异性下腰痛的学龄儿童的病历。其中 58 例用于建立算法,15 例用于测试其性能。提取的资料包括:年龄、性别、年级、症状出现后天数、下腰痛病史、过去下腰痛天数、身高、体重、体重指数、被动直腿抬高试验结果、每周运动时间、是否存在脊柱裂、腰椎前凸角和腰骶关节角。使用 bootstrap 和聚合方法进行了 150 次分类回归树分析。然后,通过多数票表决法整合结果,建立算法。

结果

腰椎前凸角、症状出现后天数、体重指数和腰骶关节角是区分这些损伤的预测因素。

结论

该算法可用于识别需要进行高级影像学检查的腰痛小学生,但需要进一步的大样本研究来验证该算法。

相似文献

3
Characteristics of lumbar spondylolysis in elementary school age children.小学学龄儿童腰椎峡部裂的特征
Eur Spine J. 2016 Feb;25(2):602-6. doi: 10.1007/s00586-015-4029-4. Epub 2015 May 26.
5
Prevalence of Symptomatic Lumbar Spondylolysis in Pediatric Patients.小儿患者中症状性腰椎峡部裂的患病率
Orthopedics. 2016 May 1;39(3):e434-7. doi: 10.3928/01477447-20160404-07. Epub 2016 Apr 12.
7
Pedicle Stress Injury in Children and Adolescents With Low Back Pain.儿童和青少年腰痛的椎弓根应力损伤。
Spine (Phila Pa 1976). 2019 Sep 1;44(17):E1038-E1044. doi: 10.1097/BRS.0000000000003046.

本文引用的文献

4
Lumbar spondylolysis in the adolescent athlete.青少年运动员的腰椎峡部裂
Phys Ther Sport. 2016 Jul;20:56-60. doi: 10.1016/j.ptsp.2016.04.003. Epub 2016 Apr 13.
7
Characteristics of lumbar spondylolysis in elementary school age children.小学学龄儿童腰椎峡部裂的特征
Eur Spine J. 2016 Feb;25(2):602-6. doi: 10.1007/s00586-015-4029-4. Epub 2015 May 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验