Xu Yanzi, Dang Dongfeng, Zhang Ning, Zhang Jianyu, Xu Ruohan, Wang Zhi, Zhou Yu, Zhang Haoke, Liu Haixiang, Yang Zhiwei, Meng Lingjie, Lam Jacky W Y, Tang Ben Zhong
School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiao Tong University, Xi'an 710049, P. R. China.
Department of Chemistry, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, P. R. China.
ACS Nano. 2022 Apr 26;16(4):5932-5942. doi: 10.1021/acsnano.1c11125. Epub 2022 Mar 28.
Organelle-specific imaging and dynamic tracking in ultrahigh resolution is essential for understanding their functions in biological research, but this remains a challenge. Therefore, a facile strategy by utilizing anion-π interactions is proposed here to construct an aggregation-induced emission luminogen (AIEgen) of DTPAP-P, not only restricting the intramolecular motions but also blocking their strong π-π interactions. DTPAP-P exhibits a high photoluminescence quantum yield (PLQY) of 35.04% in solids, favorable photostability and biocompatibility, indicating its potential application in super-resolution imaging (SRI) via stimulated emission depletion (STED) nanoscopy. It is also observed that this cationic DTPAP-P can specifically target to mitochondria or nucleus dependent on the cell status, resulting in tunable organelle-specific imaging in nanometer scale. In live cells, mitochondria-specific imaging and their dynamic monitoring (fission and fusion) can be obtained in ultrahigh resolution with a full-width-at-half-maximum (fwhm) value of only 165 nm by STED nanoscopy. This is about one-sixth of the fwhm value in confocal microscopy (1028 nm). However, a migration process occurs for fixed cells from mitochondria to nucleus under light activation (405 nm), leading to nucleus-targeted super-resolution imaging (fwhm= 184 nm). These findings indicate that tunable organelle-specific imaging and dynamic tracking by a single AIEgen at a superior resolution can be achieved in our case here via STED nanoscopy, thus providing an efficient method to further understand organelle's functions and roles in biological research.
在生物研究中,细胞器特异性的超高分辨率成像和动态追踪对于理解其功能至关重要,但这仍然是一项挑战。因此,本文提出了一种利用阴离子-π相互作用的简便策略,构建了一种DTPAP-P聚集诱导发光 luminogen(AIEgen),不仅限制了分子内运动,还阻断了其强烈的π-π相互作用。DTPAP-P在固体中表现出35.04%的高光致发光量子产率(PLQY)、良好的光稳定性和生物相容性,表明其在通过受激发射损耗(STED)纳米显微镜进行超分辨率成像(SRI)中的潜在应用。还观察到,这种阳离子DTPAP-P可根据细胞状态特异性靶向线粒体或细胞核,从而在纳米尺度上实现可调的细胞器特异性成像。在活细胞中,通过STED纳米显微镜可以以仅165 nm的半高宽(fwhm)值在超高分辨率下获得线粒体特异性成像及其动态监测(裂变和融合)。这约为共聚焦显微镜(1028 nm)中fwhm值的六分之一。然而,在光激活(405 nm)下,固定细胞会发生从线粒体到细胞核的迁移过程,从而实现靶向细胞核的超分辨率成像(fwhm = 184 nm)。这些发现表明,在我们的研究中,通过STED纳米显微镜可以利用单一AIEgen以优异的分辨率实现可调的细胞器特异性成像和动态追踪,从而为在生物研究中进一步理解细胞器的功能和作用提供了一种有效的方法。