Suppr超能文献

研究卷积神经网络在超声图像分割中的偏移方差

Investigating Shift Variance of Convolutional Neural Networks in Ultrasound Image Segmentation.

作者信息

Sharifzadeh Mostafa, Benali Habib, Rivaz Hassan

出版信息

IEEE Trans Ultrason Ferroelectr Freq Control. 2022 May;69(5):1703-1713. doi: 10.1109/TUFFC.2022.3162800. Epub 2022 Apr 27.

Abstract

While accuracy is an evident criterion for ultrasound image segmentation, output consistency across different tests is equally crucial for tracking changes in regions of interest in applications such as monitoring the patients' response to treatment, measuring the progression or regression of the disease, reaching a diagnosis, or treatment planning. Convolutional neural networks (CNNs) have attracted rapidly growing interest in automatic ultrasound image segmentation recently. However, CNNs are not shift-equivariant, meaning that, if the input translates, e.g., in the lateral direction by one pixel, the output segmentation may drastically change. To the best of our knowledge, this problem has not been studied in ultrasound image segmentation or even more broadly in ultrasound images. Herein, we investigate and quantify the shift-variance problem of CNNs in this application and further evaluate the performance of a recently published technique, called BlurPooling, for addressing the problem. In addition, we propose the Pyramidal BlurPooling method that outperforms BlurPooling in both output consistency and segmentation accuracy. Finally, we demonstrate that data augmentation is not a replacement for the proposed method. Source code is available at http://code.sonography.ai.

摘要

虽然准确性是超声图像分割的一个明显标准,但在诸如监测患者对治疗的反应、测量疾病的进展或消退、进行诊断或制定治疗计划等应用中,不同测试之间的输出一致性对于跟踪感兴趣区域的变化同样至关重要。卷积神经网络(CNN)最近在自动超声图像分割中引起了迅速增长的关注。然而,CNN不是平移不变的,这意味着,如果输入发生平移,例如在横向方向上平移一个像素,输出分割可能会发生巨大变化。据我们所知,这个问题在超声图像分割中尚未得到研究,甚至在更广泛的超声图像领域也是如此。在此,我们研究并量化了CNN在该应用中的平移变化问题,并进一步评估了一种最近发表的称为模糊池化(BlurPooling)的技术解决该问题的性能。此外,我们提出了金字塔模糊池化方法,该方法在输出一致性和分割准确性方面均优于模糊池化。最后,我们证明数据增强不能替代所提出的方法。源代码可在http://code.sonography.ai获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验