Suppr超能文献

超越卷积神经网络:挖掘医学图像分割中更深层次的内在对称性

Beyond CNNs: Exploiting Further Inherent Symmetries in Medical Image Segmentation.

作者信息

Pang Shuchao, Du Anan, Orgun Mehmet A, Wang Yan, Sheng Quan Z, Wang Shoujin, Huang Xiaoshui, Yu Zhenmei

出版信息

IEEE Trans Cybern. 2023 Nov;53(11):6776-6787. doi: 10.1109/TCYB.2022.3195447. Epub 2023 Oct 17.

Abstract

Automatic tumor or lesion segmentation is a crucial step in medical image analysis for computer-aided diagnosis. Although the existing methods based on convolutional neural networks (CNNs) have achieved the state-of-the-art performance, many challenges still remain in medical tumor segmentation. This is because, although the human visual system can detect symmetries in 2-D images effectively, regular CNNs can only exploit translation invariance, overlooking further inherent symmetries existing in medical images, such as rotations and reflections. To solve this problem, we propose a novel group equivariant segmentation framework by encoding those inherent symmetries for learning more precise representations. First, kernel-based equivariant operations are devised on each orientation, which allows it to effectively address the gaps of learning symmetries in existing approaches. Then, to keep segmentation networks globally equivariant, we design distinctive group layers with layer-wise symmetry constraints. Finally, based on our novel framework, extensive experiments conducted on real-world clinical data demonstrate that a group equivariant Res-UNet (called GER-UNet) outperforms its regular CNN-based counterpart and the state-of-the-art segmentation methods in the tasks of hepatic tumor segmentation, COVID-19 lung infection segmentation, and retinal vessel detection. More importantly, the newly built GER-UNet also shows potential in reducing the sample complexity and the redundancy of filters, upgrading current segmentation CNNs, and delineating organs on other medical imaging modalities.

摘要

自动肿瘤或病变分割是计算机辅助诊断医学图像分析中的关键步骤。尽管现有的基于卷积神经网络(CNN)的方法已经取得了最优性能,但医学肿瘤分割仍存在许多挑战。这是因为,虽然人类视觉系统能够有效地检测二维图像中的对称性,但常规的CNN只能利用平移不变性,而忽略了医学图像中存在的进一步固有对称性,如旋转和反射。为了解决这个问题,我们提出了一种新颖的群等变分割框架,通过编码这些固有对称性来学习更精确的表示。首先,在每个方向上设计基于内核的等变操作,这使其能够有效解决现有方法在学习对称性方面的不足。然后,为了保持分割网络的全局等变性,我们设计了具有逐层对称约束的独特群层。最后,基于我们的新颖框架,在真实世界临床数据上进行的大量实验表明,群等变Res-UNet(称为GER-UNet)在肝肿瘤分割、COVID-19肺部感染分割和视网膜血管检测任务中优于其基于常规CNN的对应模型以及当前最优的分割方法。更重要的是,新构建的GER-UNet在降低样本复杂性和滤波器冗余性、升级当前分割CNN以及在其他医学成像模态上描绘器官方面也显示出潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验