Suppr超能文献

全球超声图像乳腺病灶分割指导网络。

Global guidance network for breast lesion segmentation in ultrasound images.

机构信息

Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.

Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Hong Kong, China.

出版信息

Med Image Anal. 2021 May;70:101989. doi: 10.1016/j.media.2021.101989. Epub 2021 Feb 4.

Abstract

Automatic breast lesion segmentation in ultrasound helps to diagnose breast cancer, which is one of the dreadful diseases that affect women globally. Segmenting breast regions accurately from ultrasound image is a challenging task due to the inherent speckle artifacts, blurry breast lesion boundaries, and inhomogeneous intensity distributions inside the breast lesion regions. Recently, convolutional neural networks (CNNs) have demonstrated remarkable results in medical image segmentation tasks. However, the convolutional operations in a CNN often focus on local regions, which suffer from limited capabilities in capturing long-range dependencies of the input ultrasound image, resulting in degraded breast lesion segmentation accuracy. In this paper, we develop a deep convolutional neural network equipped with a global guidance block (GGB) and breast lesion boundary detection (BD) modules for boosting the breast ultrasound lesion segmentation. The GGB utilizes the multi-layer integrated feature map as a guidance information to learn the long-range non-local dependencies from both spatial and channel domains. The BD modules learn additional breast lesion boundary map to enhance the boundary quality of a segmentation result refinement. Experimental results on a public dataset and a collected dataset show that our network outperforms other medical image segmentation methods and the recent semantic segmentation methods on breast ultrasound lesion segmentation. Moreover, we also show the application of our network on the ultrasound prostate segmentation, in which our method better identifies prostate regions than state-of-the-art networks.

摘要

自动乳腺病变分割有助于诊断乳腺癌,乳腺癌是全球女性面临的一种可怕疾病。由于超声图像中固有的斑点伪影、模糊的乳腺病变边界以及乳腺病变区域内不均匀的强度分布,准确地从超声图像中分割乳腺区域是一项具有挑战性的任务。最近,卷积神经网络(CNN)在医学图像分割任务中取得了显著的成果。然而,CNN 中的卷积操作通常关注局部区域,这些区域在捕获输入超声图像的长程依赖关系方面能力有限,导致乳腺病变分割精度降低。在本文中,我们开发了一种深度卷积神经网络,该网络配备了全局引导块(GGB)和乳腺病变边界检测(BD)模块,以提高乳腺超声病变分割的性能。GGB 利用多层集成特征图作为指导信息,从空间和通道域学习长程非局部依赖关系。BD 模块学习附加的乳腺病变边界图,以增强分割结果细化的边界质量。在一个公共数据集和一个收集的数据集上的实验结果表明,我们的网络在乳腺超声病变分割方面优于其他医学图像分割方法和最近的语义分割方法。此外,我们还展示了我们的网络在超声前列腺分割中的应用,在该应用中,我们的方法比最先进的网络更好地识别前列腺区域。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验