Tan Alysa Ziying, Yu Han, Cui Lizhen, Yang Qiang
IEEE Trans Neural Netw Learn Syst. 2023 Dec;34(12):9587-9603. doi: 10.1109/TNNLS.2022.3160699. Epub 2023 Nov 30.
In parallel with the rapid adoption of artificial intelligence (AI) empowered by advances in AI research, there has been growing awareness and concerns of data privacy. Recent significant developments in the data regulation landscape have prompted a seismic shift in interest toward privacy-preserving AI. This has contributed to the popularity of Federated Learning (FL), the leading paradigm for the training of machine learning models on data silos in a privacy-preserving manner. In this survey, we explore the domain of personalized FL (PFL) to address the fundamental challenges of FL on heterogeneous data, a universal characteristic inherent in all real-world datasets. We analyze the key motivations for PFL and present a unique taxonomy of PFL techniques categorized according to the key challenges and personalization strategies in PFL. We highlight their key ideas, challenges, opportunities, and envision promising future trajectories of research toward a new PFL architectural design, realistic PFL benchmarking, and trustworthy PFL approaches.
随着人工智能(AI)研究进展推动人工智能的迅速应用,人们对数据隐私的认识和担忧日益增加。数据监管格局最近的重大发展促使人们对隐私保护型人工智能的兴趣发生了巨大转变。这推动了联邦学习(FL)的普及,它是以隐私保护方式在数据孤岛中训练机器学习模型的主要范式。在本次综述中,我们探索个性化联邦学习(PFL)领域,以解决联邦学习在异构数据上的基本挑战,异构数据是所有现实世界数据集固有的普遍特征。我们分析了PFL的关键动机,并根据PFL中的关键挑战和个性化策略,提出了PFL技术的独特分类法。我们强调了它们的关键思想、挑战、机遇,并展望了朝着新的PFL架构设计、现实的PFL基准测试和可信赖的PFL方法进行研究的有前景的未来轨迹。