University of New South Wales, Sydney, Australia.
Islamic Azad University of Science and Research Branch, Tehran, Iran.
Comput Biol Med. 2022 Jun;145:105402. doi: 10.1016/j.compbiomed.2022.105402. Epub 2022 Mar 21.
Multiple Sclerosis (MS) is a Central Nervous System (CNS) disease that Magnetic Resonance Imaging (MRI) system can detect and segment its lesions. Artificial Neural Networks (ANNs) recently reached a noticeable performance in finding MS lesions from MRI. U-Net and Attention U-Net are two of the most successful ANNs in the field of MS lesion segmentation. In this work, we proposed a framework to segment MS lesions in Fluid-Attenuated Inversion Recovery (FLAIR) and T2 MRI images by modified U-Net and modified Attention U-Net. For this purpose, we developed some extra preprocessing on MRI scans, made modifications in the loss function of U-Net and Attention U-Net, and proposed using the union of FLAIR and T2 predictions to reach a better performance. Results show that the union of FLAIR and T2 predicted masks by the modified Attention U-Net reaches the performance of 82.30% in terms of Dice Similarity Coefficient (DSC) in the test dataset, which is a considerable improvement compared to the previous works.
多发性硬化症(MS)是一种中枢神经系统(CNS)疾病,磁共振成像(MRI)系统可以检测和分割其病变。人工神经网络(ANNs)最近在从 MRI 中发现 MS 病变方面取得了显著的性能。U-Net 和 Attention U-Net 是 MS 病变分割领域最成功的两个 ANN 之一。在这项工作中,我们提出了一个框架,通过改进的 U-Net 和改进的 Attention U-Net 对液体衰减反转恢复(FLAIR)和 T2 MRI 图像中的 MS 病变进行分割。为此,我们对 MRI 扫描进行了一些额外的预处理,对 U-Net 和 Attention U-Net 的损失函数进行了修改,并提出了使用 FLAIR 和 T2 预测结果的并集来获得更好的性能。结果表明,改进的 Attention U-Net 对 FLAIR 和 T2 预测掩模的并集在测试数据集的 Dice 相似系数(DSC)方面达到了 82.30%的性能,与之前的工作相比有了相当大的提高。