Suppr超能文献

深入探究多发性硬化症(MS)病变:一种改进的注意力 U-Net 用于脑 MRI 中的 MS 病变分割。

Delve into Multiple Sclerosis (MS) lesion exploration: A modified attention U-Net for MS lesion segmentation in Brain MRI.

机构信息

University of New South Wales, Sydney, Australia.

Islamic Azad University of Science and Research Branch, Tehran, Iran.

出版信息

Comput Biol Med. 2022 Jun;145:105402. doi: 10.1016/j.compbiomed.2022.105402. Epub 2022 Mar 21.

Abstract

Multiple Sclerosis (MS) is a Central Nervous System (CNS) disease that Magnetic Resonance Imaging (MRI) system can detect and segment its lesions. Artificial Neural Networks (ANNs) recently reached a noticeable performance in finding MS lesions from MRI. U-Net and Attention U-Net are two of the most successful ANNs in the field of MS lesion segmentation. In this work, we proposed a framework to segment MS lesions in Fluid-Attenuated Inversion Recovery (FLAIR) and T2 MRI images by modified U-Net and modified Attention U-Net. For this purpose, we developed some extra preprocessing on MRI scans, made modifications in the loss function of U-Net and Attention U-Net, and proposed using the union of FLAIR and T2 predictions to reach a better performance. Results show that the union of FLAIR and T2 predicted masks by the modified Attention U-Net reaches the performance of 82.30% in terms of Dice Similarity Coefficient (DSC) in the test dataset, which is a considerable improvement compared to the previous works.

摘要

多发性硬化症(MS)是一种中枢神经系统(CNS)疾病,磁共振成像(MRI)系统可以检测和分割其病变。人工神经网络(ANNs)最近在从 MRI 中发现 MS 病变方面取得了显著的性能。U-Net 和 Attention U-Net 是 MS 病变分割领域最成功的两个 ANN 之一。在这项工作中,我们提出了一个框架,通过改进的 U-Net 和改进的 Attention U-Net 对液体衰减反转恢复(FLAIR)和 T2 MRI 图像中的 MS 病变进行分割。为此,我们对 MRI 扫描进行了一些额外的预处理,对 U-Net 和 Attention U-Net 的损失函数进行了修改,并提出了使用 FLAIR 和 T2 预测结果的并集来获得更好的性能。结果表明,改进的 Attention U-Net 对 FLAIR 和 T2 预测掩模的并集在测试数据集的 Dice 相似系数(DSC)方面达到了 82.30%的性能,与之前的工作相比有了相当大的提高。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验