Suppr超能文献

基于深度学习的脑磁共振成像序列与视图平面识别

Brain MRI sequence and view plane identification using deep learning.

作者信息

Ali Syed Saad Azhar

机构信息

Aerospace Engineering Department and Interdisciplinary Research Center for Smart Mobility and Logistics, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia.

出版信息

Front Neuroinform. 2024 Apr 23;18:1373502. doi: 10.3389/fninf.2024.1373502. eCollection 2024.

Abstract

Brain magnetic resonance imaging (MRI) scans are available in a wide variety of sequences, view planes, and magnet strengths. A necessary preprocessing step for any automated diagnosis is to identify the MRI sequence, view plane, and magnet strength of the acquired image. Automatic identification of the MRI sequence can be useful in labeling massive online datasets used by data scientists in the design and development of computer aided diagnosis (CAD) tools. This paper presents a deep learning (DL) approach for brain MRI sequence and view plane identification using scans of different data types as input. A 12-class classification system is presented for commonly used MRI scans, including T1, T2-weighted, proton density (PD), fluid attenuated inversion recovery (FLAIR) sequences in axial, coronal and sagittal view planes. Multiple online publicly available datasets have been used to train the system, with multiple infrastructures. MobileNet-v2 offers an adequate performance accuracy of 99.76% with unprocessed MRI scans and a comparable accuracy with skull-stripped scans and has been deployed in a tool for public use. The tool has been tested on unseen data from online and hospital sources with a satisfactory performance accuracy of 99.84 and 86.49%, respectively.

摘要

脑磁共振成像(MRI)扫描有多种序列、视图平面和磁体强度可供选择。对于任何自动诊断而言,一个必要的预处理步骤是识别所采集图像的MRI序列、视图平面和磁体强度。自动识别MRI序列对于标记数据科学家在计算机辅助诊断(CAD)工具的设计和开发中使用的海量在线数据集可能很有用。本文提出了一种深度学习(DL)方法,用于以不同数据类型的扫描作为输入来识别脑MRI序列和视图平面。针对常用的MRI扫描,提出了一种12类分类系统,包括轴向、冠状和矢状视图平面中的T1、T2加权、质子密度(PD)、液体衰减反转恢复(FLAIR)序列。已使用多个在线公开可用数据集和多种基础设施来训练该系统。MobileNet-v2在未处理的MRI扫描上具有99.76%的足够性能准确率,在去颅骨扫描上具有相当的准确率,并且已部署在一个供公众使用的工具中。该工具已在来自在线和医院来源的未见数据上进行了测试,性能准确率分别令人满意,为99.84%和86.49%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f015/11074364/67c37e7f46d5/fninf-18-1373502-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验