Suppr超能文献

基于数字孪生的信息物理生产系统容错方法

Digital twin-based fault tolerance approach for Cyber-Physical Production System.

作者信息

Saraeian Shideh, Shirazi Babak

机构信息

Department of Computer Engineering, Gorgan Branch, Islamic Azad University, Gorgan, Iran.

Department of Industrial Engineering, Mazandaran University of Science and Technology, Babol, Iran.

出版信息

ISA Trans. 2022 Nov;130:35-50. doi: 10.1016/j.isatra.2022.03.007. Epub 2022 Mar 16.

Abstract

Cyber-Physical Production Systems (CPPSs) as distributed Systems of Systems (SoS) are at the center of attention from different industries. CPPSs face different categories of errors. These errors will cause failures of the entire production chain. To handle this concern, production systems should be converted into fault-tolerant production systems. To present such systems, a fault tolerance approach was developed to help possible faults prediction and detection of faults causes in this study. Also, the increasing complexity and uncertainty of CPPS call for Digital Twin (DT)-based fault tolerance approach. The proposes approach uses an extraction module to extract the faults signatures efficiently. Based on all extracted faults, appropriate responses could be generated through reliable faults patterns prediction. This method is provided using Fault Tree Analyzer (FTA), Zero-suppressed Decision Diagram (ZDD), and Support Vector Machine-Adaptive Neuro-Fuzzy Inference System (SVM-ANFIS) structure. The results based on digital twin-based CPPS of the food production system as a use case show that the proposed approach can predict reliable faults signatures to prevent failures and make a much reliable production system. Also, this method can guarantee that CPPS is up and running with optimal levels at all times.

摘要

作为分布式系统之系统(SoS)的网络物理生产系统(CPPS)是不同行业关注的焦点。CPPS面临不同类型的错误。这些错误将导致整个生产链的故障。为解决这一问题,生产系统应转换为容错生产系统。为了呈现这样的系统,本研究开发了一种容错方法,以帮助进行可能的故障预测和故障原因检测。此外,CPPS日益增加的复杂性和不确定性要求采用基于数字孪生(DT)的容错方法。所提出的方法使用一个提取模块来高效地提取故障特征。基于所有提取的故障,可以通过可靠的故障模式预测生成适当的响应。该方法是使用故障树分析器(FTA)、零抑制决策图(ZDD)和支持向量机-自适应神经模糊推理系统(SVM-ANFIS)结构提供的。以食品生产系统的基于数字孪生的CPPS为例的结果表明,所提出的方法可以预测可靠的故障特征以防止故障,并构建一个更加可靠的生产系统。此外,该方法可以保证CPPS始终以最佳水平运行。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验