Molecular Biophysics Laboratory, Indian Institute of Science Education and Research, Bhopal, India.
Molecular Biophysics Laboratory, Indian Institute of Science Education and Research, Bhopal, India.
J Biol Chem. 2022 May;298(5):101870. doi: 10.1016/j.jbc.2022.101870. Epub 2022 Mar 26.
The human mitochondrial outer membrane is biophysically unique as it is the only membrane possessing transmembrane β-barrel proteins (mitochondrial outer membrane proteins, mOMPs) in the cell. The most vital of the three mOMPs is the core protein of the translocase of the outer mitochondrial membrane (TOM) complex. Identified first as MOM38 in Neurospora in 1990, the structure of Tom40, the core 19-stranded β-barrel translocation channel, was solved in 2017, after nearly three decades. Remarkably, the past four years have witnessed an exponential increase in structural and functional studies of yeast and human TOM complexes. In addition to being conserved across all eukaryotes, the TOM complex is the sole ATP-independent import machinery for nearly all of the ∼1000 to 1500 known mitochondrial proteins. Recent cryo-EM structures have provided detailed insight into both possible assembly mechanisms of the TOM core complex and organizational dynamics of the import machinery and now reveal novel regulatory interplay with other mOMPs. Functional characterization of the TOM complex using biochemical and structural approaches has also revealed mechanisms for substrate recognition and at least five defined import pathways for precursor proteins. In this review, we discuss the discovery, recently solved structures, molecular function, and regulation of the TOM complex and its constituents, along with the implications these advances have for alleviating human diseases.
人的线粒体外膜在生理物理学上具有独特性,因为它是细胞中唯一具有跨膜β-桶状蛋白(线粒体外膜蛋白,mOMPs)的膜。在这三种 mOMP 中,最重要的是外线粒体膜转位酶(TOM)复合物的核心蛋白。该蛋白于 1990 年在 Neurospora 中首次被鉴定为 MOM38,其结构为 Tom40,是一个由 19 股β-桶状的转位通道组成的核心,直到 2017 年才被解析,历经近三十年。值得注意的是,在过去的四年中,酵母和人类 TOM 复合物的结构和功能研究呈指数级增长。除了在所有真核生物中保守外,TOM 复合物是近 1000 到 1500 种已知线粒体蛋白的唯一非 ATP 依赖的输入机制。最近的冷冻电镜结构为 TOM 核心复合物的可能组装机制以及输入机制的组织动力学提供了详细的见解,现在揭示了与其他 mOMPs 的新的调节相互作用。使用生化和结构方法对 TOM 复合物的功能特征进行的研究也揭示了底物识别的机制,以及前体蛋白至少有五个定义的输入途径。在这篇综述中,我们讨论了 TOM 复合物及其成分的发现、最近解决的结构、分子功能和调节,以及这些进展对缓解人类疾病的意义。