Suppr超能文献

氧化应激对主动脉平滑肌细胞端粒维持的影响。

Effect of oxidative stress on telomere maintenance in aortic smooth muscle cells.

机构信息

Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290, USA.

Department of Internal Medicine, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48109, USA.

出版信息

Biochim Biophys Acta Mol Basis Dis. 2022 Jul 1;1868(7):166397. doi: 10.1016/j.bbadis.2022.166397. Epub 2022 Mar 26.

Abstract

Reactive oxygen species (ROS) and telomere dysfunction are both associated with aging and the development of age-related diseases. Although there is evidence for a direct relationship between ROS and telomere dysfunction as well as an independent association of oxidative stress and telomere attrition with age-related disorders, there has not been sufficient exploration of how the interaction between oxidative stress and telomere function may contribute to the pathophysiology of cardiovascular diseases (CVD). To better understand the complex relationships between oxidative stress, telomerase biology and pathophysiology, we examined the telomere biology of aortic smooth muscle cells (ASMCs) isolated from mutant mouse models of oxidative stress. We discovered that telomere lengths were significantly shorter in ASMCs isolated from superoxide dismutase 2 heterozygous (Sod2) mice, which exhibit increased arterial stiffness with aging, and the observed telomere attrition occurred over time. Furthermore, the telomere erosion occurred even though telomerase activity increased. In contrast, telomeres remained stable in wild-type and superoxide dismutase 1 heterozygous (Sod1) mice, which do not exhibit CVD phenotypes. The data indicate that mitochondrial oxidative stress, in particular elevated superoxide levels and decreased hydrogen peroxide levels, induces telomere erosion in the ASMCs of the Sod2 mice. This reduction in telomere length occurs despite an increase in telomerase activity and correlates with the onset of disease phenotype. Our results suggest that the oxidative stress caused by imbalance in mitochondrial ROS, from deficient SOD2 activity as a model for mitochondrial dysfunction results in telomere dysfunction, which may contribute to pathogenesis of CVD.

摘要

活性氧(ROS)和端粒功能障碍均与衰老和与年龄相关疾病的发展有关。尽管有证据表明 ROS 与端粒功能障碍之间存在直接关系,以及氧化应激和端粒损耗与与年龄相关疾病的独立关联,但对于氧化应激和端粒功能之间的相互作用如何导致心血管疾病(CVD)的病理生理学尚未进行充分探索。为了更好地理解氧化应激、端粒酶生物学和病理生理学之间的复杂关系,我们检查了来自氧化应激突变体小鼠模型的主动脉平滑肌细胞(ASMC)的端粒生物学。我们发现,随着年龄的增长,超氧化物歧化酶 2 杂合(Sod2)小鼠的动脉僵硬度增加,从中分离出的 ASMC 的端粒长度明显缩短,并且观察到的端粒损耗是随时间发生的。此外,尽管端粒酶活性增加,但端粒仍在侵蚀。相比之下,野生型和超氧化物歧化酶 1 杂合(Sod1)小鼠的端粒保持稳定,这些小鼠不表现出 CVD 表型。数据表明,线粒体氧化应激,特别是超氧自由基水平升高和过氧化氢水平降低,会导致 Sod2 小鼠的 ASMC 发生端粒侵蚀。尽管端粒酶活性增加,但端粒长度的减少仍会发生,并与疾病表型的出现相关。我们的结果表明,作为线粒体功能障碍模型的 SOD2 活性不足导致的线粒体 ROS 失衡引起的氧化应激导致端粒功能障碍,这可能导致 CVD 的发病机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验