Suppr超能文献

通过微板读数仪分析神经退行性疾病的 hiPSC 衍生神经元细胞模型中的线粒体功能障碍。

Analysis of Mitochondrial Dysfunction by Microplate Reader in hiPSC-Derived Neuronal Cell Models of Neurodegenerative Disorders.

机构信息

Institute of Cancer and Genomic Sciences, Institute of Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK.

Department of Pharmacology, University of São Paulo, São Paulo, Brazil.

出版信息

Methods Mol Biol. 2022;2549:1-21. doi: 10.1007/7651_2021_451.

Abstract

Mitochondria are responsible for many vital pathways governing cellular homeostasis, including cellular energy management, heme biosynthesis, lipid metabolism, cellular proliferation and differentiation, cell cycle regulation, and cellular viability. Electron transport and ADP phosphorylation coupled with proton pumping through the mitochondrial complexes contribute to the preservation of mitochondrial membrane potential (ΔΨ). Importantly, mitochondrial polarization is essential for reactive oxygen species (ROS) production and cytosolic calcium (Ca) handling. Thus, changes in mitochondrial oxidative phosphorylation (OXPHOS), ΔΨ, and ATP/ADP may occur in parallel or stimulate each other. Brain cells like neurons are heavily reliant on mitochondrial OXPHOS for its high-energy demands, and hence improper mitochondrial function is detrimental for neuronal survival. Indeed, several neurodegenerative disorders are associated with mitochondrial dysfunction. Modeling this disease-relevant phenotype in neuronal cells differentiated from patient-derived human induced pluripotent stem cells (hiPSCs) provide an appropriate cellular platform for studying the disease pathology and drug discovery. In this review, we describe high-throughput analysis of crucial parameters related to mitochondrial function in hiPSC-derived neurons. These methodologies include measurement of ΔΨ, intracellular Ca, oxidative stress, and ATP/ADP levels using fluorescence probes via a microplate reader. Benefits of such an approach include analysis of mitochondrial parameters on a large population of cells, simultaneous analysis of different cell lines and experimental conditions, and for drug screening to identify compounds restoring mitochondrial function.

摘要

线粒体负责许多重要的细胞内稳态途径,包括细胞能量管理、血红素生物合成、脂质代谢、细胞增殖和分化、细胞周期调控以及细胞活力。电子传递和 ADP 磷酸化与质子通过线粒体复合物泵出相偶联,有助于维持线粒体膜电位 (ΔΨ)。重要的是,线粒体极化对于活性氧 (ROS) 产生和细胞质钙 (Ca) 处理至关重要。因此,线粒体氧化磷酸化 (OXPHOS)、ΔΨ 和 ATP/ADP 的变化可以平行发生或相互刺激。像神经元这样的脑细胞高度依赖线粒体 OXPHOS 来满足其高能量需求,因此线粒体功能异常对神经元的存活不利。事实上,几种神经退行性疾病都与线粒体功能障碍有关。从患者来源的诱导多能干细胞 (hiPSC) 分化而来的神经元细胞中模拟这种与疾病相关的表型,为研究疾病病理和药物发现提供了合适的细胞平台。在这篇综述中,我们描述了使用微孔板读数器通过荧光探针测量 hiPSC 衍生神经元中与线粒体功能相关的关键参数的高通量分析。这些方法包括测量 ΔΨ、细胞内 Ca、氧化应激和 ATP/ADP 水平。这种方法的好处包括对大量细胞进行线粒体参数分析、同时分析不同的细胞系和实验条件,以及用于药物筛选以识别恢复线粒体功能的化合物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验