Healthy Living Spaces lab, Institute for Occupational, Social, and Environmental Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany.
Indoor Air. 2022 Mar;32(3):e13018. doi: 10.1111/ina.13018.
The adaptive thermal heat balance (ATHB) framework introduced a method to account for the three adaptive principals, namely physiological, behavioral, and psychological adaptation, individually within existing heat balance models. This work presents a more detailed theoretical framework together with a theory-driven empirical determination toward a new formulation of the ATHB . The empirical development followed a rigor statistical process known from machine learning approaches including training, validation, and test phase and makes use of a subset (N = 57 084 records) of the ASHRAE Global Thermal Comfort Database. Results show an increased predictive performance among a wide range of outdoor climates, building types, and cooling strategies of the buildings. Furthermore, individual findings question the common believe that psychological adaptation is highest in naturally ventilated buildings. The framework offers further opportunities to include a variety of context-related variables as well as personal characteristics into thermal prediction models, while keeping mathematical equations limited and enabling further advancements related to the understanding of influences on thermal perception.
自适应热平衡(ATHB)框架引入了一种方法,可以在现有的热平衡模型中分别考虑生理、行为和心理适应这三个自适应原则。本工作提出了一个更详细的理论框架,并通过理论驱动的实证确定,提出了 ATHB 的新公式。实证研究遵循了机器学习方法中众所周知的严格统计过程,包括训练、验证和测试阶段,并利用了 ASHRAE 全球热舒适数据库的一个子集(N=57084 条记录)。研究结果表明,该模型在广泛的户外气候、建筑类型和建筑冷却策略下具有更高的预测性能。此外,个别研究结果对普遍认为自然通风建筑中心理适应度最高的观点提出了质疑。该框架为将各种与上下文相关的变量以及个人特征纳入热预测模型提供了进一步的机会,同时保持数学方程的限制,并能够促进与理解热感知影响相关的进一步发展。