Suppr超能文献

基于数据非依赖采集质谱技术发现抗 PD-1 免疫治疗一线治疗非小细胞肺癌的疗效生物标志物。

Discovery of efficacy biomarkers for non-small cell lung cancer with first-line anti-PD-1 immunotherapy by 
data-independent acquisition mass spectrometry.

机构信息

Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.

Shanghai Key Laboratory of Lung Inflammation and Injury, Shanghai, China.

出版信息

Clin Exp Immunol. 2022 May 13;208(1):60-71. doi: 10.1093/cei/uxac021.

Abstract

First-line immune checkpoint inhibitors (ICIs) have greatly ameliorated outcomes in non-small cell lung cancer (NSCLC). However, approximately a quarter of patients receiving ICIs demonstrate long-term clinical benefit, and the true responders have not been fully clarified by the existing biomarkers. To discover potential biomarkers treatment-related outcomes in plasma, mass spectrometry assay for the data-independent acquisition was analyzed plasma samples collected before the anti-PD-1 treatment. From July 2019 to January 2020, 15 patients with EGFR/ALK-negative NSCLC receiving first-line anti-programmed cell death protein 1 (PD-1) inhibitors were enrolled, and six healthy individuals have collected the plasma samples as control. We explored plasma proteome profiles and conducted stratified analyses by anti-PD-1 responders and non-responders. To validate the target proteins by ELISA, we recruited 22 additional independent patients and 15 healthy individuals from April 2021 to August 2021. By identifying biomarkers to predict better efficacy, we performed differential expression analysis in 12 responders and three non-responders. Compared with healthy individuals, hierarchical cluster analysis revealed plasma proteome profiles of NSCLC were markedly changed in 170 differentially expressed proteins. Furthermore, we discovered that SAA1, SAA2, S100A8, and S100A9 were noticeably increased among non-responders than responders, which may serve as predictive biomarkers with unfavorable responses. The validated results from all samples via ELISA have confirmed this observation. Identified a set of plasma-derived protein biomarkers (SAA1, SAA2, S100A8, and S100A9) that could potentially predict the efficacy in cohorts of patients with NSCLC treated with first-line anti-PD-1 inhibitors and deserves further prospective study.

摘要

一线免疫检查点抑制剂 (ICI) 极大地改善了非小细胞肺癌 (NSCLC) 的预后。然而,大约四分之一接受 ICI 治疗的患者表现出长期的临床获益,而现有的生物标志物并未完全阐明真正的应答者。为了在血浆中发现潜在的生物标志物与治疗相关的结果,使用数据非依赖性采集的质谱分析方法分析了在抗 PD-1 治疗前采集的血浆样本。从 2019 年 7 月至 2020 年 1 月,共纳入了 15 名接受一线抗程序性细胞死亡蛋白 1 (PD-1) 抑制剂治疗的 EGFR/ALK 阴性 NSCLC 患者,并且采集了 6 名健康个体的血浆样本作为对照。我们探索了血浆蛋白质组谱,并通过抗 PD-1 应答者和非应答者进行分层分析。为了通过 ELISA 验证目标蛋白,我们从 2021 年 4 月至 2021 年 8 月招募了 22 名额外的独立患者和 15 名健康个体。通过识别预测更好疗效的生物标志物,我们在 12 名应答者和 3 名非应答者中进行了差异表达分析。与健康个体相比,层次聚类分析显示 NSCLC 的血浆蛋白质组谱在 170 种差异表达蛋白中发生了显著变化。此外,我们发现 SAA1、SAA2、S100A8 和 S100A9 在非应答者中明显高于应答者,这可能是预测无应答的生物标志物。通过 ELISA 对所有样本进行的验证结果证实了这一观察结果。确定了一组潜在的血浆衍生蛋白生物标志物 (SAA1、SAA2、S100A8 和 S100A9),它们可能预测一线抗 PD-1 抑制剂治疗 NSCLC 患者的疗效,值得进一步前瞻性研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b878/9113286/5ebd33f7129b/uxac021_fig9.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验